Enhancing Structured-Data Retrieval with GraphRAG: Soccer Data Case Study
- URL: http://arxiv.org/abs/2409.17580v1
- Date: Thu, 26 Sep 2024 06:53:29 GMT
- Title: Enhancing Structured-Data Retrieval with GraphRAG: Soccer Data Case Study
- Authors: Zahra Sepasdar, Sushant Gautam, Cise Midoglu, Michael A. Riegler, Pål Halvorsen,
- Abstract summary: Structured-GraphRAG is a versatile framework designed to enhance information retrieval across structured datasets in natural language queries.
Our findings show that Structured-GraphRAG significantly improves query processing efficiency and reduces response times.
- Score: 4.742245127121496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Extracting meaningful insights from large and complex datasets poses significant challenges, particularly in ensuring the accuracy and relevance of retrieved information. Traditional data retrieval methods such as sequential search and index-based retrieval often fail when handling intricate and interconnected data structures, resulting in incomplete or misleading outputs. To overcome these limitations, we introduce Structured-GraphRAG, a versatile framework designed to enhance information retrieval across structured datasets in natural language queries. Structured-GraphRAG utilizes multiple knowledge graphs, which represent data in a structured format and capture complex relationships between entities, enabling a more nuanced and comprehensive retrieval of information. This graph-based approach reduces the risk of errors in language model outputs by grounding responses in a structured format, thereby enhancing the reliability of results. We demonstrate the effectiveness of Structured-GraphRAG by comparing its performance with that of a recently published method using traditional retrieval-augmented generation. Our findings show that Structured-GraphRAG significantly improves query processing efficiency and reduces response times. While our case study focuses on soccer data, the framework's design is broadly applicable, offering a powerful tool for data analysis and enhancing language model applications across various structured domains.
Related papers
- FastRAG: Retrieval Augmented Generation for Semi-structured Data [1.5566524830295307]
This paper introduces FastRAG, a novel RAG approach designed for semi-structured data.
FastRAG employs schema learning and script learning to extract and structure data without needing to submit entire data sources to an LLM.
It integrates text search with knowledge graph querying to improve accuracy in retrieving context-rich information.
arXiv Detail & Related papers (2024-11-21T01:00:25Z) - Advanced RAG Models with Graph Structures: Optimizing Complex Knowledge Reasoning and Text Generation [7.3491970177535]
This study proposes a scheme to process graph structure data by combining graph neural network (GNN)
The results show that the graph-based RAG model proposed in this paper is superior to the traditional generation model in terms of quality, knowledge consistency, and reasoning ability.
arXiv Detail & Related papers (2024-11-06T00:23:55Z) - RiTeK: A Dataset for Large Language Models Complex Reasoning over Textual Knowledge Graphs [12.846097618151951]
We develop a dataset for LLMs Complex Reasoning over Textual Knowledge Graphs (RiTeK) with a broad topological structure coverage.
We synthesize realistic user queries that integrate diverse topological structures, annotated information, and complex textual descriptions.
We introduce an enhanced Monte Carlo Tree Search (CTS) method, which automatically extracts relational path information from textual graphs for specific queries.
arXiv Detail & Related papers (2024-10-17T19:33:37Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
We propose a Graph Structure Self-Contrasting (GSSC) framework that learns graph structural information without message passing.
The proposed framework is based purely on Multi-Layer Perceptrons (MLPs), where the structural information is only implicitly incorporated as prior knowledge.
It first applies structural sparsification to remove potentially uninformative or noisy edges in the neighborhood, and then performs structural self-contrasting in the sparsified neighborhood to learn robust node representations.
arXiv Detail & Related papers (2024-09-09T12:56:02Z) - Introducing Diminutive Causal Structure into Graph Representation Learning [19.132025125620274]
We introduce a novel method that enables Graph Neural Networks (GNNs) to glean insights from specialized diminutive causal structures.
Our method specifically extracts causal knowledge from the model representation of these diminutive causal structures.
arXiv Detail & Related papers (2024-06-13T00:18:20Z) - GraphER: A Structure-aware Text-to-Graph Model for Entity and Relation Extraction [3.579132482505273]
Information extraction is an important task in Natural Language Processing (NLP)
We propose a novel approach to this task by formulating it as graph structure learning (GSL)
This formulation allows for better interaction and structure-informed decisions for entity and relation prediction.
arXiv Detail & Related papers (2024-04-18T20:09:37Z) - GraphEdit: Large Language Models for Graph Structure Learning [62.618818029177355]
Graph Structure Learning (GSL) focuses on capturing intrinsic dependencies and interactions among nodes in graph-structured data.
Existing GSL methods heavily depend on explicit graph structural information as supervision signals.
We propose GraphEdit, an approach that leverages large language models (LLMs) to learn complex node relationships in graph-structured data.
arXiv Detail & Related papers (2024-02-23T08:29:42Z) - StructGPT: A General Framework for Large Language Model to Reason over
Structured Data [117.13986738340027]
We develop an emphIterative Reading-then-Reasoning(IRR) approach for solving question answering tasks based on structured data.
Our approach can significantly boost the performance of ChatGPT and achieve comparable performance against the full-data supervised-tuning baselines.
arXiv Detail & Related papers (2023-05-16T17:45:23Z) - Boosting Event Extraction with Denoised Structure-to-Text Augmentation [52.21703002404442]
Event extraction aims to recognize pre-defined event triggers and arguments from texts.
Recent data augmentation methods often neglect the problem of grammatical incorrectness.
We propose a denoised structure-to-text augmentation framework for event extraction DAEE.
arXiv Detail & Related papers (2023-05-16T16:52:07Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Graph Information Bottleneck [77.21967740646784]
Graph Neural Networks (GNNs) provide an expressive way to fuse information from network structure and node features.
Inheriting from the general Information Bottleneck (IB), GIB aims to learn the minimal sufficient representation for a given task.
We show that our proposed models are more robust than state-of-the-art graph defense models.
arXiv Detail & Related papers (2020-10-24T07:13:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.