FastRAG: Retrieval Augmented Generation for Semi-structured Data
- URL: http://arxiv.org/abs/2411.13773v1
- Date: Thu, 21 Nov 2024 01:00:25 GMT
- Title: FastRAG: Retrieval Augmented Generation for Semi-structured Data
- Authors: Amar Abane, Anis Bekri, Abdella Battou,
- Abstract summary: This paper introduces FastRAG, a novel RAG approach designed for semi-structured data.
FastRAG employs schema learning and script learning to extract and structure data without needing to submit entire data sources to an LLM.
It integrates text search with knowledge graph querying to improve accuracy in retrieving context-rich information.
- Score: 1.5566524830295307
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficiently processing and interpreting network data is critical for the operation of increasingly complex networks. Recent advances in Large Language Models (LLM) and Retrieval-Augmented Generation (RAG) techniques have improved data processing in network management. However, existing RAG methods like VectorRAG and GraphRAG struggle with the complexity and implicit nature of semi-structured technical data, leading to inefficiencies in time, cost, and retrieval. This paper introduces FastRAG, a novel RAG approach designed for semi-structured data. FastRAG employs schema learning and script learning to extract and structure data without needing to submit entire data sources to an LLM. It integrates text search with knowledge graph (KG) querying to improve accuracy in retrieving context-rich information. Evaluation results demonstrate that FastRAG provides accurate question answering, while improving up to 90% in time and 85% in cost compared to GraphRAG.
Related papers
- RAKG:Document-level Retrieval Augmented Knowledge Graph Construction [10.013667560362565]
This paper focuses on the task of automatic document-level knowledge graph construction.
It proposes the Document-level Retrieval Augmented Knowledge Graph Construction (RAKG) framework.
arXiv Detail & Related papers (2025-04-14T02:47:23Z) - Enhancing Large Language Models (LLMs) for Telecommunications using Knowledge Graphs and Retrieval-Augmented Generation [52.8352968531863]
Large language models (LLMs) have made significant progress in general-purpose natural language processing tasks.
This paper presents a novel framework that combines knowledge graph (KG) and retrieval-augmented generation (RAG) techniques to enhance LLM performance in the telecom domain.
arXiv Detail & Related papers (2025-03-31T15:58:08Z) - RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs [58.10503898336799]
We introduce the RAG-on-Graphs Library (RGL), a modular framework that seamlessly integrates the complete RAG pipeline.
RGL addresses key challenges by supporting a variety of graph formats and integrating optimized implementations for essential components.
Our evaluations demonstrate that RGL not only accelerates the prototyping process but also enhances the performance and applicability of graph-based RAG systems.
arXiv Detail & Related papers (2025-03-25T03:21:48Z) - Pseudo-Knowledge Graph: Meta-Path Guided Retrieval and In-Graph Text for RAG-Equipped LLM [8.941718961724984]
Pseudo-Knowledge Graph (PKG) framework integrates Meta-path Retrieval, In-graph Text and Vector Retrieval into Large Language Models.
PKG offers a richer knowledge representation and improves accuracy in information retrieval.
arXiv Detail & Related papers (2025-03-01T02:39:37Z) - GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation [84.41557981816077]
We introduce GFM-RAG, a novel graph foundation model (GFM) for retrieval augmented generation.
GFM-RAG is powered by an innovative graph neural network that reasons over graph structure to capture complex query-knowledge relationships.
It achieves state-of-the-art performance while maintaining efficiency and alignment with neural scaling laws.
arXiv Detail & Related papers (2025-02-03T07:04:29Z) - CG-RAG: Research Question Answering by Citation Graph Retrieval-Augmented LLMs [9.718354494802002]
Contextualized Graph Retrieval-Augmented Generation (CG-RAG) is a novel framework that integrates sparse and dense retrieval signals within graph structures.
First, we propose a contextual graph representation for citation graphs, effectively capturing both explicit and implicit connections within and across documents.
Second, we introduce Lexical-Semantic Graph Retrieval (LeSeGR), which seamlessly integrates sparse and dense retrieval signals with graph encoding.
Third, we present a context-aware generation strategy that utilizes the retrieved graph-structured information to generate precise and contextually enriched responses.
arXiv Detail & Related papers (2025-01-25T04:18:08Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.
Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization [94.31508613367296]
Retrieval-augmented generation (RAG) is a key means to effectively enhance large language models (LLMs)
We propose StructRAG, which can identify the optimal structure type for the task at hand, reconstruct original documents into this structured format, and infer answers based on the resulting structure.
Experiments show that StructRAG achieves state-of-the-art performance, particularly excelling in challenging scenarios.
arXiv Detail & Related papers (2024-10-11T13:52:44Z) - LightRAG: Simple and Fast Retrieval-Augmented Generation [12.86888202297654]
Retrieval-Augmented Generation (RAG) systems enhance large language models (LLMs) by integrating external knowledge sources.
Existing RAG systems have significant limitations, including reliance on flat data representations and inadequate contextual awareness.
We propose LightRAG, which incorporates graph structures into text indexing and retrieval processes.
arXiv Detail & Related papers (2024-10-08T08:00:12Z) - Enhancing Structured-Data Retrieval with GraphRAG: Soccer Data Case Study [4.742245127121496]
Structured-GraphRAG is a versatile framework designed to enhance information retrieval across structured datasets in natural language queries.
Our findings show that Structured-GraphRAG significantly improves query processing efficiency and reduces response times.
arXiv Detail & Related papers (2024-09-26T06:53:29Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) is a paradigm that integrates external contextual information with large language models (LLMs) to enhance factual accuracy and relevance.
We introduce SFR-RAG, a small LLM that is instruction-textual with an emphasis on context-grounded generation and hallucination.
We also present ConBench, a new evaluation framework compiling multiple popular and diverse RAG benchmarks.
arXiv Detail & Related papers (2024-09-16T01:08:18Z) - RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation [54.707460684650584]
Large Language Models (LLMs) demonstrate human-level capabilities in dialogue, reasoning, and knowledge retention.
Current research addresses this bottleneck by equipping LLMs with external knowledge, a technique known as Retrieval Augmented Generation (RAG)
RAGLAB is a modular and research-oriented open-source library that reproduces 6 existing algorithms and provides a comprehensive ecosystem for investigating RAG algorithms.
arXiv Detail & Related papers (2024-08-21T07:20:48Z) - Graph Retrieval-Augmented Generation: A Survey [28.979898837538958]
Retrieval-Augmented Generation (RAG) has achieved remarkable success in addressing the challenges of Large Language Models (LLMs) without necessitating retraining.
This paper provides the first comprehensive overview of GraphRAG methodologies.
We formalize the GraphRAG workflow, encompassing Graph-Based Indexing, Graph-Guided Retrieval, and Graph-Enhanced Generation.
arXiv Detail & Related papers (2024-08-15T12:20:24Z) - WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs [10.380692079063467]
We propose WeKnow-RAG, which integrates Web search and Knowledge Graphs into a "Retrieval-Augmented Generation (RAG)" system.
First, the accuracy and reliability of LLM responses are improved by combining the structured representation of Knowledge Graphs with the flexibility of dense vector retrieval.
Our approach effectively balances the efficiency and accuracy of information retrieval, thus improving the overall retrieval process.
arXiv Detail & Related papers (2024-08-14T15:19:16Z) - HIRO: Hierarchical Information Retrieval Optimization [0.0]
Retrieval-Augmented Generation (RAG) has revolutionized natural language processing by dynamically integrating external knowledge into Large Language Models (LLMs)
Recent implementations of RAG leverage hierarchical data structures, which organize documents at various levels of summarization and information density.
This complexity can cause LLMs to "choke" on information overload, necessitating more sophisticated querying mechanisms.
arXiv Detail & Related papers (2024-06-14T12:41:07Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - On the Generalization Capability of Temporal Graph Learning Algorithms:
Theoretical Insights and a Simpler Method [59.52204415829695]
Temporal Graph Learning (TGL) has become a prevalent technique across diverse real-world applications.
This paper investigates the generalization ability of different TGL algorithms.
We propose a simplified TGL network, which enjoys a small generalization error, improved overall performance, and lower model complexity.
arXiv Detail & Related papers (2024-02-26T08:22:22Z) - Lightweight, Dynamic Graph Convolutional Networks for AMR-to-Text
Generation [56.73834525802723]
Lightweight Dynamic Graph Convolutional Networks (LDGCNs) are proposed.
LDGCNs capture richer non-local interactions by synthesizing higher order information from the input graphs.
We develop two novel parameter saving strategies based on the group graph convolutions and weight tied convolutions to reduce memory usage and model complexity.
arXiv Detail & Related papers (2020-10-09T06:03:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.