論文の概要: SECURE: Semantics-aware Embodied Conversation under Unawareness for Lifelong Robot Learning
- arxiv url: http://arxiv.org/abs/2409.17755v3
- Date: Tue, 15 Jul 2025 10:13:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 15:29:03.565318
- Title: SECURE: Semantics-aware Embodied Conversation under Unawareness for Lifelong Robot Learning
- Title(参考訳): SECURE:生涯ロボット学習のための無意識下でのセマンティック・アウェア・エンボディード・会話
- Authors: Rimvydas Rubavicius, Peter David Fagan, Alex Lascarides, Subramanian Ramamoorthy,
- Abstract要約: 本稿では,無意識下での再配置と呼ぶ対話型タスク学習シナリオについて論じる。
エージェントは、タスクの解決に必要な重要な概念を知らずに剛体環境を操作し、デプロイメント中にそれについて学ぶ必要がある。
本稿では,このようなシナリオに対処するための対話型タスク学習ポリシーSECUREを紹介する。
- 参考スコア(独自算出の注目度): 17.125080112897102
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper addresses a challenging interactive task learning scenario we call rearrangement under unawareness: an agent must manipulate a rigid-body environment without knowing a key concept necessary for solving the task and must learn about it during deployment. For example, the user may ask to "put the two granny smith apples inside the basket", but the agent cannot correctly identify which objects in the environment are "granny smith" as the agent has not been exposed to such a concept before. We introduce SECURE, an interactive task learning policy designed to tackle such scenarios. The unique feature of SECURE is its ability to enable agents to engage in semantic analysis when processing embodied conversations and making decisions. Through embodied conversation, a SECURE agent adjusts its deficient domain model by engaging in dialogue to identify and learn about previously unforeseen possibilities. The SECURE agent learns from the user's embodied corrective feedback when mistakes are made and strategically engages in dialogue to uncover useful information about novel concepts relevant to the task. These capabilities enable the SECURE agent to generalize to new tasks with the acquired knowledge. We demonstrate in the simulated Blocksworld and the real-world apple manipulation environments that the SECURE agent, which solves such rearrangements under unawareness, is more data-efficient than agents that do not engage in embodied conversation or semantic analysis.
- Abstract(参考訳): エージェントは、タスクの解決に必要な重要な概念を知らずに剛体環境を操作し、デプロイ中にそれを学ばなければならない。
例えば、ユーザーは「バスケットの中の2つのおばあちゃんのスミスリンゴを押す」よう要求するが、エージェントは、これまでそのような概念に露出していなかったため、その環境内のどのオブジェクトが「おばあちゃんのスミス」であるかを正確に識別することはできない。
本稿では,このようなシナリオに対処するための対話型タスク学習ポリシーSECUREを紹介する。
SECUREのユニークな特徴は、エージェントが具体的会話の処理や意思決定を行う際に意味分析を行うことを可能にすることである。
具体的会話を通じて、SECUREエージェントは、これまで予期せぬ可能性を特定し、学習するために対話をすることで、その欠陥のあるドメインモデルを調整する。
SECUREエージェントは、ミスが発生したときにユーザの具体的修正フィードバックから学習し、そのタスクに関連する新しい概念に関する有用な情報を明らかにするために、戦略的に対話を行う。
これらの能力により、SECUREエージェントは獲得した知識で新しいタスクに一般化できる。
シミュレーションされたBlocksworldと実世界のリンゴ操作環境において、無意識下で再配置を解決するSECUREエージェントは、具体的会話や意味分析に関わらないエージェントよりもデータ効率が高いことを実証する。
関連論文リスト
- Understanding Learner-LLM Chatbot Interactions and the Impact of Prompting Guidelines [9.834055425277874]
本研究は,学習者とAIの相互作用を,参加者が効果的なプロンプトの構造化指導を受ける教育実験を通して調査する。
ユーザの行動を評価し,有効性を促進するために,107人のユーザから642のインタラクションのデータセットを解析した。
我々の研究は、ユーザーが大規模言語モデルとどのように関わり、AI支援コミュニケーションを強化するための構造化された指導の役割についてより深く理解している。
論文 参考訳(メタデータ) (2025-04-10T15:20:43Z) - A Desideratum for Conversational Agents: Capabilities, Challenges, and Future Directions [51.96890647837277]
大規模言語モデル(LLM)は、従来の対話システムから、自律的な行動、文脈認識、ユーザとのマルチターンインタラクションが可能な高度なエージェントへと、会話AIを推進してきた。
本調査では,人間レベルの知性にアプローチするよりスケーラブルなシステムにおいて,何が達成されたのか,どのような課題が持続するのか,何を行う必要があるのか,といった,次世代の会話エージェントのデシラトゥムを提示する。
論文 参考訳(メタデータ) (2025-04-07T21:01:25Z) - Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AIエージェントは、あいまいで不明確なユーザー指示に基づいて、タスクを自動化するためにますますデプロイされている。
不安定な仮定をし、明確な質問をしないことは、最適以下の結果につながる可能性がある。
対話型コード生成設定において,LLMエージェントが不明瞭な命令を処理する能力について,プロプライエタリモデルとオープンウェイトモデルを評価して検討する。
論文 参考訳(メタデータ) (2025-02-18T17:12:26Z) - Memento No More: Coaching AI Agents to Master Multiple Tasks via Hints Internalization [56.674356045200696]
本稿では,複雑なメモシステムや事前の高品質な実演データを必要としない,複数のタスクに対する知識とスキルを取り入れたAIエージェントの訓練手法を提案する。
このアプローチでは,エージェントが新たな経験を収集し,ヒントの形で人間から補正フィードバックを受け取り,このフィードバックを重みに組み込む,反復的なプロセスを採用している。
Llama-3 をベースとしたエージェントに実装することで,提案手法の有効性を実証し,数ラウンドのフィードバックの後,高度なモデル GPT-4o と DeepSeek-V3 をタスクセットで向上させる。
論文 参考訳(メタデータ) (2025-02-03T17:45:46Z) - Collaborative Instance Object Navigation: Leveraging Uncertainty-Awareness to Minimize Human-Agent Dialogues [54.81155589931697]
協調インスタンスオブジェクトナビゲーション(CoIN)は、エージェントがターゲットインスタンスに関する不確実性を積極的に解決する新しいタスク設定である。
未認識者に対するエージェント・ユーザインタラクション(AIUTA)の新たな学習自由化手法を提案する。
まず、オブジェクト検出時に、セルフクエチオナーモデルがエージェント内で自己対話を開始し、完全かつ正確な観察記述を得る。
インタラクショントリガーモジュールは、人間に質問するか、継続するか、ナビゲーションを停止するかを決定する。
論文 参考訳(メタデータ) (2024-12-02T08:16:38Z) - Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - Unsupervised Skill Discovery for Robotic Manipulation through Automatic Task Generation [17.222197596599685]
本稿では,多数の自律的タスクを解くことで構成可能な振る舞いを発見するスキル学習手法を提案する。
本手法は,ロボットが環境内の物体と連続的かつ堅牢に対話することを可能にするスキルを学習する。
学習したスキルは、シミュレーションだけでなく、本物のロボットプラットフォーム上でも、目に見えない操作タスクのセットを解決するために使用できる。
論文 参考訳(メタデータ) (2024-10-07T09:19:13Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
大型言語モデル(LLM)は、エンボディドインテリジェンスの発展に変化をもたらした。
本稿では,このプロセスにおけるバックドアセキュリティの重大な脅威を明らかにする。
ほんの少しの文脈的デモンストレーションを毒殺しただけで、攻撃者はブラックボックスLDMの文脈的環境を隠蔽することができる。
論文 参考訳(メタデータ) (2024-08-06T01:20:12Z) - ChatShop: Interactive Information Seeking with Language Agents [16.879814917881895]
新しい情報を戦略的に求める欲求と能力は 人間の学習に欠かせないものです
我々は,言語エージェントが戦略的探索を行う能力をテストするために設計された,人気のあるWebショッピングタスクを分析した。
提案課題は,エージェントが情報を探究し,徐々に蓄積する能力を効果的に評価できることを示す。
論文 参考訳(メタデータ) (2024-04-15T16:35:41Z) - Self-Explainable Affordance Learning with Embodied Caption [63.88435741872204]
具体的キャプションを具現化したSelf-Explainable Affordance Learning (SEA)を紹介する。
SEAは、ロボットが意図を明確に表現し、説明可能な視覚言語キャプションと視覚能力学習のギャップを埋めることを可能にする。
本稿では, 簡便かつ効率的な方法で, 空き地と自己説明を効果的に組み合わせた新しいモデルを提案する。
論文 参考訳(メタデータ) (2024-04-08T15:22:38Z) - Tell Me More! Towards Implicit User Intention Understanding of Language
Model Driven Agents [110.25679611755962]
現在の言語モデル駆動エージェントは、しばしば効果的なユーザ参加のメカニズムを欠いている。
Intention-in-Interaction (IN3) は明示的なクエリを通してユーザの暗黙の意図を検査するための新しいベンチマークである。
私たちは、タスクの曖昧さを積極的に評価し、ユーザの意図を問う強力なモデルであるMistral-Interactを経験的に訓練し、それらを実行可能な目標へと洗練させます。
論文 参考訳(メタデータ) (2024-02-14T14:36:30Z) - Incremental Learning of Humanoid Robot Behavior from Natural Interaction and Large Language Models [23.945922720555146]
本研究では,自然相互作用から複雑な行動の漸進的な学習を実現するシステムを提案する。
本システムは,ヒューマノイドロボットARMAR-6のロボット認知アーキテクチャに組み込まれている。
論文 参考訳(メタデータ) (2023-09-08T13:29:05Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - "No, to the Right" -- Online Language Corrections for Robotic
Manipulation via Shared Autonomy [70.45420918526926]
LILACは、実行中に自然言語の修正をオンラインで実施し、適応するためのフレームワークである。
LILACは人間とロボットを個別にターンテイクする代わりに、人間とロボットの間にエージェンシーを分割する。
提案手法は,タスク完了率が高く,ユーザによって主観的に好まれることを示す。
論文 参考訳(メタデータ) (2023-01-06T15:03:27Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
本稿では,ユーザが新しいタスクを定義するための"プログラミング不要"なアプローチを提供する,視覚に基づくデクスタラスな操作システムについて述べる。
本システムには,最終タスクと中間タスクを画像例で定義するためのフレームワークが組み込まれている。
実世界における多段階物体操作の4指ロボットハンドラーによる実験結果
論文 参考訳(メタデータ) (2022-12-19T22:50:40Z) - Explaining Agent's Decision-making in a Hierarchical Reinforcement
Learning Scenario [0.6643086804649938]
強化学習(Reinforcement learning)は、行動心理学に基づく機械学習手法である。
本研究では,サブタスクからなる階層環境において,メモリベースで説明可能な強化学習手法を利用する。
論文 参考訳(メタデータ) (2022-12-14T01:18:45Z) - Semantic Interactive Learning for Text Classification: A Constructive
Approach for Contextual Interactions [0.0]
本稿では,テキスト領域に対するセマンティック対話学習という新しいインタラクションフレームワークを提案する。
構築的および文脈的フィードバックを学習者に取り入れることで、人間と機械間のよりセマンティックなアライメントを実現するアーキテクチャを見つけることができる。
本研究では,人間の概念的修正を非外挿訓練例に翻訳するのに有効なSemanticPushという手法を提案する。
論文 参考訳(メタデータ) (2022-09-07T08:13:45Z) - Active Inference for Robotic Manipulation [30.692885688744507]
アクティブ推論(英: Active Inference)は、部分的に可観測性を扱う理論である。
本研究では,ロボット操作作業のシミュレーションにActive Inferenceを適用した。
アクティブ推論によって引き起こされる情報探索行動により,エージェントはこれらの難易度の高い環境を体系的に探索できることを示す。
論文 参考訳(メタデータ) (2022-06-01T12:19:38Z) - Utterance Rewriting with Contrastive Learning in Multi-turn Dialogue [22.103162555263143]
比較学習とマルチタスク学習を導入し、問題を共同でモデル化する。
提案手法は,複数の公開データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-03-22T10:13:27Z) - Teachable Reinforcement Learning via Advice Distillation [161.43457947665073]
外部教師が提供した構造化アドバイスから学習する「教育可能な」意思決定システムに基づく対話型学習のための新しい指導パラダイムを提案する。
我々は、アドバイスから学ぶエージェントが、標準的な強化学習アルゴリズムよりも人的監督力の少ない新しいスキルを習得できることを示す。
論文 参考訳(メタデータ) (2022-03-19T03:22:57Z) - Talk-to-Resolve: Combining scene understanding and spatial dialogue to
resolve granular task ambiguity for a collocated robot [15.408128612723882]
ロボットのコロケーションの実用性は、人間との容易で直感的な相互作用機構に大きく依存する。
本稿では,TTR(Talk-to-Resolve)と呼ばれるシステムについて述べる。
本システムでは,82%の精度でスタレマトを同定し,適切な対話交換で解決することができる。
論文 参考訳(メタデータ) (2021-11-22T10:42:59Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
多くのマルチタスク強化学習は、ロボットが常にすべてのタスクからデータを収集できると仮定している。
本研究では,物理ロボットシステムの実用的制約を動機として,現実的なマルチタスクRL問題について検討する。
我々は、ロボットのスキルセットを累積的に成長させるために、過去のタスクで学んだデータとポリシーを効果的に活用するアプローチを導出する。
論文 参考訳(メタデータ) (2021-09-19T18:00:51Z) - Axiom Learning and Belief Tracing for Transparent Decision Making in
Robotics [8.566457170664926]
ロボットがその決定や信念の説明を提供する能力は、人間との効果的なコラボレーションを促進する。
我々のアーキテクチャは、非単調な論理的推論、ディープラーニング、決定木帰納の相補的な強みを兼ね備えています。
推論と学習の間、このアーキテクチャにより、ロボットはその決定、信念、仮説的行動の結果について、オンデマンドでリレーショナルな記述を提供することができる。
論文 参考訳(メタデータ) (2020-10-20T22:09:17Z) - Learning Adaptive Language Interfaces through Decomposition [89.21937539950966]
本稿では,分解による新しいハイレベルな抽象化を学習するニューラルセマンティック解析システムを提案する。
ユーザは、新しい振る舞いを記述する高レベルな発話を低レベルなステップに分解することで、対話的にシステムを教える。
論文 参考訳(メタデータ) (2020-10-11T08:27:07Z) - Hierarchical Affordance Discovery using Intrinsic Motivation [69.9674326582747]
本研究では,移動ロボットの価格学習を支援するために,本質的なモチベーションを用いたアルゴリズムを提案する。
このアルゴリズムは、事前にプログラムされたアクションなしで、相互に関連のある価格を自律的に発見し、学習し、適応することができる。
一度学習すると、これらの余裕はアルゴリズムによって様々な困難を伴うタスクを実行するために一連のアクションを計画するために使われる。
論文 参考訳(メタデータ) (2020-09-23T07:18:21Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
我々は,次のセッション予測,発話復元,不整合検出,一貫性判定を含む4つの自己教師型タスクを導入する。
我々はPLMに基づく応答選択モデルとこれらの補助タスクをマルチタスク方式で共同で訓練する。
実験結果から,提案した補助的自己教師型タスクは,多ターン応答選択において大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-09-14T08:44:46Z) - Dialog Policy Learning for Joint Clarification and Active Learning
Queries [24.420113907842147]
我々は階層的な対話ポリシーを訓練し、明確化と活発な学習の両方を共同で行う。
本研究では,これらの機能の一つあるいは両方に対して静的なダイアログポリシーを使用することよりも,対話ポリシーの明確化と能動的学習が効果的であることを示す。
論文 参考訳(メタデータ) (2020-06-09T18:53:21Z) - Learning and Reasoning for Robot Dialog and Navigation Tasks [44.364322669414776]
我々は,強化学習と確率論的推論手法の相補的長所を考察しながら,ロボットタスク完了のためのアルゴリズムを開発した。
ロボットは試行錯誤の経験から学習し、宣言的な知識ベースを強化する。
我々は,ダイアログとナビゲーションタスクを実行する移動ロボットを用いて,開発したアルゴリズムを実装し,評価した。
論文 参考訳(メタデータ) (2020-05-20T03:20:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。