Continual learning with task specialist
- URL: http://arxiv.org/abs/2409.17806v1
- Date: Thu, 26 Sep 2024 12:59:09 GMT
- Title: Continual learning with task specialist
- Authors: Indu Solomon, Aye Phyu Phyu Aung, Uttam Kumar, Senthilnath Jayavelu,
- Abstract summary: We propose Continual Learning with Task Specialists (CLTS) to address the issues of catastrophic forgetting and limited labelled data.
The model consists of Task Specialists (T S) and Task Predictor (T P) with pre-trained Stable Diffusion (SD) module.
A comparison study with four SOTA models conducted on three real-world datasets shows that the proposed model outperforms all the selected baselines.
- Score: 2.8830182365988923
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual learning (CL) adapt the deep learning scenarios with timely updated datasets. However, existing CL models suffer from the catastrophic forgetting issue, where new knowledge replaces past learning. In this paper, we propose Continual Learning with Task Specialists (CLTS) to address the issues of catastrophic forgetting and limited labelled data in real-world datasets by performing class incremental learning of the incoming stream of data. The model consists of Task Specialists (T S) and Task Predictor (T P ) with pre-trained Stable Diffusion (SD) module. Here, we introduce a new specialist to handle a new task sequence and each T S has three blocks; i) a variational autoencoder (V AE) to learn the task distribution in a low dimensional latent space, ii) a K-Means block to perform data clustering and iii) Bootstrapping Language-Image Pre-training (BLIP ) model to generate a small batch of captions from the input data. These captions are fed as input to the pre-trained stable diffusion model (SD) for the generation of task samples. The proposed model does not store any task samples for replay, instead uses generated samples from SD to train the T P module. A comparison study with four SOTA models conducted on three real-world datasets shows that the proposed model outperforms all the selected baselines
Related papers
- U-TELL: Unsupervised Task Expert Lifelong Learning [2.8830182365988923]
Continual learning (CL) models are designed to learn new tasks arriving sequentially without re-training the network.
We propose an unsupervised CL model with task experts called Unsupervised Task Expert Lifelong Learning (U-TELL) to continually learn the data arriving in a sequence.
U-TELL outperformed all baselines on seven benchmarks and one industry dataset for various CL scenarios with a training time over 6 times faster than the best performing baseline.
arXiv Detail & Related papers (2024-05-23T14:31:53Z) - MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining [73.81862342673894]
Foundation models have reshaped the landscape of Remote Sensing (RS) by enhancing various image interpretation tasks.
transferring the pretrained models to downstream tasks may encounter task discrepancy due to their formulation of pretraining as image classification or object discrimination tasks.
We conduct multi-task supervised pretraining on the SAMRS dataset, encompassing semantic segmentation, instance segmentation, and rotated object detection.
Our models are finetuned on various RS downstream tasks, such as scene classification, horizontal and rotated object detection, semantic segmentation, and change detection.
arXiv Detail & Related papers (2024-03-20T09:17:22Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z) - Architecture, Dataset and Model-Scale Agnostic Data-free Meta-Learning [119.70303730341938]
We propose ePisode cUrriculum inveRsion (ECI) during data-free meta training and invErsion calibRation following inner loop (ICFIL) during meta testing.
ECI adaptively increases the difficulty level of pseudo episodes according to the real-time feedback of the meta model.
We formulate the optimization process of meta training with ECI as an adversarial form in an end-to-end manner.
arXiv Detail & Related papers (2023-03-20T15:10:41Z) - Preventing Zero-Shot Transfer Degradation in Continual Learning of
Vision-Language Models [13.340759455910721]
We propose a novel method to prevent zero-shot transfer degradation in the continual learning of vision-language models.
Our method outperforms other methods in the traditional class-incremental learning setting.
arXiv Detail & Related papers (2023-03-12T10:28:07Z) - Preventing Catastrophic Forgetting in Continual Learning of New Natural
Language Tasks [17.879087904904935]
Multi-Task Learning (MTL) is widely-accepted in Natural Language Processing as a standard technique for learning multiple related tasks in one model.
As systems usually evolve over time, adding a new task to an existing MTL model usually requires retraining the model from scratch on all the tasks.
In this paper, we approach the problem of incrementally expanding MTL models' capability to solve new tasks over time by distilling the knowledge of an already trained model on n tasks into a new one for solving n+1 tasks.
arXiv Detail & Related papers (2023-02-22T00:18:25Z) - Task Residual for Tuning Vision-Language Models [69.22958802711017]
We propose a new efficient tuning approach for vision-language models (VLMs) named Task Residual Tuning (TaskRes)
TaskRes explicitly decouples the prior knowledge of the pre-trained models and new knowledge regarding a target task.
The proposed TaskRes is simple yet effective, which significantly outperforms previous methods on 11 benchmark datasets.
arXiv Detail & Related papers (2022-11-18T15:09:03Z) - Few-Shot Class-Incremental Learning by Sampling Multi-Phase Tasks [59.12108527904171]
A model should recognize new classes and maintain discriminability over old classes.
The task of recognizing few-shot new classes without forgetting old classes is called few-shot class-incremental learning (FSCIL)
We propose a new paradigm for FSCIL based on meta-learning by LearnIng Multi-phase Incremental Tasks (LIMIT)
arXiv Detail & Related papers (2022-03-31T13:46:41Z) - Adversarial Training of Variational Auto-encoders for Continual
Zero-shot Learning [1.90365714903665]
We present a hybrid network that consists of a shared VAE module to hold information of all tasks and task-specific private VAE modules for each task.
The model's size grows with each task to prevent catastrophic forgetting of task-specific skills.
We show our method is superior on class sequentially learning with ZSL(Zero-Shot Learning) and GZSL(Generalized Zero-Shot Learning)
arXiv Detail & Related papers (2021-02-07T11:21:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.