論文の概要: Why Companies "Democratise" Artificial Intelligence: The Case of Open Source Software Donations
- arxiv url: http://arxiv.org/abs/2409.17876v1
- Date: Thu, 26 Sep 2024 14:23:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 17:47:25.945480
- Title: Why Companies "Democratise" Artificial Intelligence: The Case of Open Source Software Donations
- Title(参考訳): 企業が人工知能を"民主化"する理由 - オープンソースソフトウェアの寄付を事例として
- Authors: Cailean Osborne,
- Abstract要約: 企業は、AIのオープンソースソフトウェア(OSS)を非営利団体に寄付したり、AIモデルをリリースする際に、人工知能(AI)を「民主化する」と主張している。
本研究は、Linux Foundationへの43のAI OSS寄付に対する商業的インセンティブを調査するために、混合メソッドのアプローチを採用する。
それはAI民主化のための個人的および組織的社会的、経済的、技術的インセンティブの両方の分類に寄与している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Companies claim to "democratise" artificial intelligence (AI) when they donate AI open source software (OSS) to non-profit foundations or release AI models, among others, but what does this term mean and why do they do it? As the impact of AI on society and the economy grows, understanding the commercial incentives behind AI democratisation efforts is crucial for ensuring these efforts serve broader interests beyond commercial agendas. Towards this end, this study employs a mixed-methods approach to investigate commercial incentives for 43 AI OSS donations to the Linux Foundation. It makes contributions to both research and practice. It contributes a taxonomy of both individual and organisational social, economic, and technological incentives for AI democratisation. In particular, it highlights the role of democratising the governance and control rights of an OSS project (i.e., from one company to open governance) as a structural enabler for downstream goals, such as attracting external contributors, reducing development costs, and influencing industry standards, among others. Furthermore, OSS donations are often championed by individual developers within companies, highlighting the importance of the bottom-up incentives for AI democratisation. The taxonomy provides a framework and toolkit for discerning incentives for other AI democratisation efforts, such as the release of AI models. The paper concludes with a discussion of future research directions.
- Abstract(参考訳): 企業がAI(Democratise)を主張するのは、非営利団体にAIオープンソースソフトウェア(OSS)を寄贈したり、AIモデルをリリースする際にである。
AIが社会と経済に与える影響が増大するにつれて、AI民主化活動の背後にある商業的インセンティブを理解することは、これらの取り組みが商業的な議題を超えて幅広い利益をもたらすことを保証するために不可欠である。
この目的に向けて、本研究では、Linux Foundationへの43のAI OSS寄付に対する商業的インセンティブを調査するために、混合メソッドのアプローチを採用する。
研究と実践の両方に貢献する。
それはAI民主化のための個人的および組織的社会的、経済的、技術的インセンティブの両方の分類に寄与している。
特に、外部のコントリビュータを引きつけ、開発コストを削減し、業界標準に影響を及ぼすといった、下流目標のための構造的イネーブラーとして、OSSプロジェクトのガバナンスとコントロール権(すなわち、ある企業からオープンガバナンスへ)を廃止する役割を強調している。
さらに、OSS寄付は企業内の個々の開発者によって擁護されることが多く、AIの民主化に対するボトムアップインセンティブの重要性を強調している。
分類学は、AIモデルのリリースなど、他のAI民主主義活動に対するインセンティブを明らかにするためのフレームワークとツールキットを提供する。
本稿は、今後の研究方向性に関する議論から締めくくっている。
関連論文リスト
- Do Responsible AI Artifacts Advance Stakeholder Goals? Four Key Barriers Perceived by Legal and Civil Stakeholders [59.17981603969404]
責任あるAI(RAI)コミュニティは、透明性を促進し、AIシステムのガバナンスをサポートするために、多数のプロセスとアーティファクトを導入している。
我々は、責任あるAI活動に関する政策と擁護を通知する19の政府、法律、市民社会の利害関係者と半構造化されたインタビューを行う。
我々は、これらの信念を4つの障壁にまとめて、RAIアーティファクトが(必然的に)市民社会、政府、産業間での権力関係を再構成する方法を説明する。
論文 参考訳(メタデータ) (2024-08-22T00:14:37Z) - Artificial intelligence, rationalization, and the limits of control in the public sector: the case of tax policy optimization [0.0]
AIシステムに対する批判の大部分が、Weberianの合理化の中心にあるよく知られた緊張から生まれたものであることを示す。
分析の結果,社会的・経済的平等を促進する機械的税制の構築が可能であることが示唆された。
また、AIによるポリシーの最適化は、他の競合する政治的価値観を排除することによってもたらされる、とも強調している。
論文 参考訳(メタデータ) (2024-07-07T11:54:14Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - A Safe Harbor for AI Evaluation and Red Teaming [124.89885800509505]
一部の研究者は、そのような研究の実施や研究成果の公表が、アカウント停止や法的報復につながることを恐れている。
我々は、主要なAI開発者が法的、技術的に安全な港を提供することを約束することを提案します。
これらのコミットメントは、ジェネレーティブAIのリスクに取り組むための、より包括的で意図しないコミュニティ努力への必要なステップである、と私たちは信じています。
論文 参考訳(メタデータ) (2024-03-07T20:55:08Z) - Computing Power and the Governance of Artificial Intelligence [51.967584623262674]
政府や企業は、AIを管理する手段として計算を活用し始めている。
計算ベースのポリシーと技術は、これらの領域を補助する可能性があるが、実装の準備ができている点で大きなバリエーションがある。
プライバシーや経済的影響、権力の中央集権化といった分野において、ガバナンスの計算方法の素早い、あるいは不十分なアプローチは重大なリスクを伴います。
論文 参考訳(メタデータ) (2024-02-13T21:10:21Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Trust, Accountability, and Autonomy in Knowledge Graph-based AI for
Self-determination [1.4305544869388402]
知識グラフ(KG)は、インテリジェントな意思決定を支えるための基盤として登場した。
KGと神経学習の統合は、現在活発な研究のトピックである。
本稿では,KGベースのAIによる自己決定を支援するための基礎的なトピックと研究の柱を概念化する。
論文 参考訳(メタデータ) (2023-10-30T12:51:52Z) - FATE in AI: Towards Algorithmic Inclusivity and Accessibility [0.0]
AIにおけるアルゴリズム上の格差、公平性、説明責任、透明性、倫理(FATE)が実装されている。
本研究では、AIによって守られている世界南部地域のFATE関連デシダータ、特に透明性と倫理について検討する。
インクリシティを促進するために、コミュニティ主導の戦略が提案され、責任あるAI設計のための代表データを収集し、キュレートする。
論文 参考訳(メタデータ) (2023-01-03T15:08:10Z) - Is Decentralized AI Safer? [0.0]
さまざまなグループがオープンなAIシステムを構築し、リスクを調査し、倫理について議論している。
本稿では,ブロックチェーン技術がこれらの取り組みをどのように促進し,形式化するかを実証する。
AIの分散化は、AIのリスクと倫理的懸念を軽減するだけでなく、今後の作業で考慮すべき新しい問題も導入する、と私たちは主張する。
論文 参考訳(メタデータ) (2022-11-04T01:01:31Z) - AI Governance and Ethics Framework for Sustainable AI and Sustainability [0.0]
自律兵器、自動化された雇用損失、社会経済的不平等、データやアルゴリズムによる偏見、プライバシー侵害、ディープフェイクなど、人類にとってのAIリスクは数多く発生している。
社会的多様性、公平性、包摂性は、リスクを緩和し、価値を生み出し、社会正義を促進するAIの重要な成功要因と考えられている。
AIによる持続可能な未来に向けての旅では、優先事項としてAI倫理とガバナンスに取り組む必要があります。
論文 参考訳(メタデータ) (2022-09-28T22:23:10Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。