論文の概要: The Nexus of AR/VR, AI, UI/UX, and Robotics Technologies in Enhancing Learning and Social Interaction for Children with Autism Spectrum Disorders: A Systematic Review
- arxiv url: http://arxiv.org/abs/2409.18162v2
- Date: Sun, 06 Jul 2025 11:42:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 17:51:39.310277
- Title: The Nexus of AR/VR, AI, UI/UX, and Robotics Technologies in Enhancing Learning and Social Interaction for Children with Autism Spectrum Disorders: A Systematic Review
- Title(参考訳): AR/VR, AI, UI/UX, ロボティクスのNexus : 自閉症スペクトラム障害児のための学習とソーシャルインタラクションの強化に関するシステムレビュー
- Authors: Biplov Paneru, Bishwash Paneru,
- Abstract要約: 大言語モデル(LLM)、拡張現実(AR)、子どもに対する治療におけるユーザインターフェース/ユーザエクスペリエンス(UI/UX)設計について詳細に研究した。
150の出版物はPubMed、ACM、IEEE Xplore、Elsevier、Google Scholarで詳細な文献検索によって収集された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of large language models (LLMs), augmented reality (AR), and user interface/user experience (UI/UX) design in therapies for children, especially with disorders like autism spectrum disorder (ASD), is studied in detail in this review study. 150 publications were collected by a thorough literature search throughout PubMed, ACM, IEEE Xplore, Elsevier, and Google Scholar; 60 of them were chosen based on their methodological rigor and relevance to the focus area. Three of the primary areas are studied and covered in this review: how AR can improve social and learning results, how LLMs can support communication, and how UI/UX design affects how effective these technologies can be. Results show that while LLMs can provide individualized learning and communication support, AR has shown promise in enhancing social skills, motivation, and attention. For children with ASD, accessible and engaging interventions rely heavily on effective UI/UX design, but there is still a significant lack of robotics-based education and therapeutic programs specifically tailored for autistic children. To optimize the benefits of these technologies in ASD therapies and immersive education, the study emphasizes the need for additional research to address difficulties related to customization, accessibility, and integration.
- Abstract(参考訳): 小児、特に自閉症スペクトラム障害(ASD)などの疾患に対する治療における言語モデル(LLM)、拡張現実(AR)、ユーザインターフェース/ユーザエクスペリエンス(UI/UX)デザインの出現について,本研究で詳細に検討した。
150の出版物がPubMed、ACM、IEEE Xplore、Elsevier、Google Scholarで徹底的な文献検索によって収集された。
ARが社会的および学習の成果をどのように改善できるか、LLMがコミュニケーションをどのようにサポートするのか、UI/UX設計がこれらのテクノロジの有効性にどのように影響するか、という3つの主要な領域が、このレビューで研究され、カバーされている。
LLMは個別の学習とコミュニケーションを支援することができるが、ARは社会的スキル、モチベーション、注意力を高めることを約束している。
ASDを持つ子供たちにとって、アクセシビリティとエンゲージメントの介入は、効果的なUI/UX設計に大きく依存するが、ロボット工学に基づく教育と治療プログラムは、自閉症児に特化している。
ASD療法と没入型教育におけるこれらの技術の利点を最適化するために、カスタマイズ、アクセシビリティ、統合に関する困難に対処するための追加研究の必要性を強調した。
関連論文リスト
- Robots and Children that Learn Together : Improving Knowledge Retention by Teaching Peer-Like Interactive Robots [41.94295877935867]
本研究では,対話型強化学習(Interactive Reinforcement Learning)を,教示可能な社会ロボットの認知モデルとして紹介する。
LbT状態の小児は自己実践状態の児に比べて保持率が高くなった。
本研究は,(1)ピアロボット学習の教育的効果的でスケーラブルなモデルとしてインタラクティブRLを導入し,(2)実教室で複数の自律ロボットを同時に展開する可能性を示した。
論文 参考訳(メタデータ) (2025-06-23T07:51:04Z) - The use of Artificial Intelligence for Intervention and Assessment in Individuals with ASD [0.0]
特に、高度な機械学習技術とデータ分析を利用して、早期診断におけるAIの役割に焦点を当てている。
本稿では、AIを活用した介入技術について検討し、教育ロボットと適応通信ツールを強調した。
論文 参考訳(メタデータ) (2025-05-05T15:58:32Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - Automating Knowledge Discovery from Scientific Literature via LLMs: A Dual-Agent Approach with Progressive Ontology Prompting [59.97247234955861]
LLM-Duoという,プログレッシブプロンプトアルゴリズムとデュアルエージェントシステムを組み合わせた,大規模言語モデル(LLM)に基づく新しいフレームワークを提案する。
言語治療領域における64,177論文からの2,421件の介入を同定した。
論文 参考訳(メタデータ) (2024-08-20T16:42:23Z) - Application of Artificial Intelligence in Supporting Healthcare Professionals and Caregivers in Treatment of Autistic Children [0.552480439325792]
本稿では、自閉症スペクトラム障害(ASD)管理における医療従事者と介護者の能力を高める人工知能の可能性について検討する。
自閉症児と非自閉症児の日常活動における顔および身体の表情を解析するための高度なアルゴリズムを開発した。
本研究は, ASDの診断, 治療, 包括的管理を改善するためのAIの変革的可能性を強調する。
論文 参考訳(メタデータ) (2024-07-12T00:34:40Z) - Transformative Influence of LLM and AI Tools in Student Social Media Engagement: Analyzing Personalization, Communication Efficiency, and Collaborative Learning [0.18416014644193066]
AIによるアプリケーションは、学生がソーシャルメディアと対話する方法を変えつつある。
AIによって強化されたソーシャルメディアプラットフォームに関わる学生は、高等教育のパフォーマンスを報告します。
AIアルゴリズムは、共有された学術的関心とキャリア目標に基づいて、学生を効果的にマッチングする。
論文 参考訳(メタデータ) (2024-06-15T01:05:56Z) - Integrating A.I. in Higher Education: Protocol for a Pilot Study with 'SAMCares: An Adaptive Learning Hub' [0.6990493129893112]
本研究は,「SAMCares」と呼ぶ革新的な研究仲間を紹介することを目的としている。
このシステムは、Large Language Model(LLM)とRetriever-Augmented Generation(RAG)を利用して、リアルタイム、コンテキスト認識、適応的な教育サポートを提供する。
論文 参考訳(メタデータ) (2024-05-01T05:39:07Z) - How Can Large Language Models Enable Better Socially Assistive Human-Robot Interaction: A Brief Survey [0.478870181148207]
社会的支援ロボット (SAR) は, 特別なニーズのある利用者に対して, 個人化された認知効果のある支援を提供することで大きな成功を収めている。
大規模言語モデル(LLM)の最近の進歩により、SARの分野における新しい応用の可能性が高まっている。
論文 参考訳(メタデータ) (2024-04-01T05:50:56Z) - Hear Me, See Me, Understand Me: Audio-Visual Autism Behavior Recognition [47.550391816383794]
本稿では,音声・視覚自閉症の行動認識の新たな課題について紹介する。
社会的行動認識は、AIによる自閉症スクリーニング研究において、これまで省略されてきた重要な側面である。
データセット、コード、事前トレーニングされたモデルをリリースします。
論文 参考訳(メタデータ) (2024-03-22T22:52:35Z) - Evaluating the Efficacy of Interactive Language Therapy Based on LLM for
High-Functioning Autistic Adolescent Psychological Counseling [1.1780706927049207]
本研究では,高機能自閉症青年に対する対話型言語治療におけるLarge Language Models(LLMs)の有効性について検討した。
LLMは、従来の心理学的カウンセリング手法を強化する新しい機会を提供する。
論文 参考訳(メタデータ) (2023-11-12T07:55:39Z) - Hybrid Models for Facial Emotion Recognition in Children [0.0]
本稿では,遠隔操作型ロボットによる子どものセラピーの実践において,心理学者を支援するための感情認識技術の利用に焦点を当てた。
Embodied Conversational Agents (ECA) は、プロが社会的課題に直面している子供と繋がる手助けをする仲介ツールである。
論文 参考訳(メタデータ) (2023-08-24T04:20:20Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
情報検索は、項ベースの手法から高度なニューラルモデルとの統合へと進化してきた。
近年の研究では、大規模言語モデル(LLM)を活用してIRシステムの改善が試みられている。
LLMとIRシステムの合流点を探索し、クエリリライト、リトリバー、リランカー、リーダーといった重要な側面を含む。
論文 参考訳(メタデータ) (2023-08-14T12:47:22Z) - Community-Aware Transformer for Autism Prediction in fMRI Connectome [12.433556885503243]
Com-BrainTFは、ASD予測タスクのためのコミュニティ内およびコミュニティ間ノード埋め込みを学習する階層的なローカル・グローバル・トランスフォーマーアーキテクチャである。
我々のモデルは、ABIDEデータセット上での最先端(SOTA)アーキテクチャよりも優れており、アテンションモジュールから明らかな高い解釈可能性を持っている。
論文 参考訳(メタデータ) (2023-06-24T23:52:57Z) - AGI: Artificial General Intelligence for Education [41.45039606933712]
本稿では,人工知能(AGI)の重要な概念,能力,範囲,将来的な教育の可能性について概説する。
AGIは知的学習システム、教育評価、評価手順を大幅に改善することができる。
この論文は、AGIの能力が人間の感情や社会的相互作用を理解することに拡張されていることを強調している。
論文 参考訳(メタデータ) (2023-04-24T22:31:59Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
ヒューマン・インテリジェンス(HI)は、複雑なタスクを解くための基本的なスキルの組み合わせに長けている。
この機能は人工知能(AI)にとって不可欠であり、包括的なAIエージェントに組み込まれるべきである。
マルチステップで現実的なタスクを解決するために設計されたオープンソースのプラットフォームであるOpenAGIを紹介します。
論文 参考訳(メタデータ) (2023-04-10T03:55:35Z) - The Semantic Reader Project: Augmenting Scholarly Documents through
AI-Powered Interactive Reading Interfaces [54.2590226904332]
本稿では,研究論文を対象とした動的読解インタフェースの自動作成を目的としたセマンティック・リーダー・プロジェクトについて述べる。
10のプロトタイプインターフェースが開発され、300人以上の参加者と現実世界のユーザが読書体験を改善している。
本論文は,研究論文を読む際,学者と公衆の面を巡って構築する。
論文 参考訳(メタデータ) (2023-03-25T02:47:09Z) - Attention-Based Applications in Extended Reality to Support Autistic
Users: A Systematic Review [10.527821704930371]
拡張現実(XR)技術は自閉症者の注意向上に有効であることが示されている。
我々は,自閉症者に対するXR介入における注意の役割を探求する59の論文の体系的レビューを行った。
論文 参考訳(メタデータ) (2022-04-01T23:41:54Z) - LENAS: Learning-based Neural Architecture Search and Ensemble for 3D Radiotherapy Dose Prediction [42.38793195337463]
本稿では3次元放射線治療線量予測のための知識蒸留とニューラルネットワーク検索を統合した,学習に基づく新しいアンサンブル手法 LENAS を提案する。
当社のアプローチは、巨大なアーキテクチャ空間から各ブロックを徹底的に検索して、有望なパフォーマンスを示す複数のアーキテクチャを識別することから始まります。
モデルアンサンブルによってもたらされる複雑さを軽減するため、教師-学生パラダイムを採用し、複数の学習ネットワークからの多様な出力を監視信号として活用する。
論文 参考訳(メタデータ) (2021-06-12T10:08:52Z) - AEGIS: A real-time multimodal augmented reality computer vision based
system to assist facial expression recognition for individuals with autism
spectrum disorder [93.0013343535411]
本稿では,コンピュータビジョンと深部畳み込みニューラルネットワーク(CNN)を組み合わせたマルチモーダル拡張現実(AR)システムの開発について述べる。
提案システムはAIGISと呼ばれ,タブレット,スマートフォン,ビデオ会議システム,スマートグラスなど,さまざまなユーザデバイスにデプロイ可能な支援技術である。
我々は空間情報と時間情報の両方を活用して正確な表現予測を行い、それを対応する可視化に変換し、元のビデオフレーム上に描画する。
論文 参考訳(メタデータ) (2020-10-22T17:20:38Z) - Early Autism Spectrum Disorders Diagnosis Using Eye-Tracking Technology [62.997667081978825]
資金不足、資格のある専門家の欠如、そして修正方法に対する信頼度の低いことが、AMDのリアルタイム診断に影響を及ぼす主要な問題である。
我々のチームは、子どもの視線活動の情報に基づいて、ALDの確率を予測するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-08-21T20:22:55Z) - Explore, Discover and Learn: Unsupervised Discovery of State-Covering
Skills [155.11646755470582]
情報理論的スキル発見の代替手法として,'Explore, Discover and Learn'(EDL)がある。
本稿では,EDLがカバレッジ問題を克服し,学習スキルの初期状態への依存を減らし,ユーザが学習すべき行動について事前定義できるようにするなど,大きなメリットがあることを示す。
論文 参考訳(メタデータ) (2020-02-10T10:49:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。