論文の概要: Learning non-Gaussian spatial distributions via Bayesian transport maps with parametric shrinkage
- arxiv url: http://arxiv.org/abs/2409.19208v1
- Date: Sat, 28 Sep 2024 02:03:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 04:01:11.107661
- Title: Learning non-Gaussian spatial distributions via Bayesian transport maps with parametric shrinkage
- Title(参考訳): パラメトリック収縮を持つベイズ輸送写像による非ガウス空間分布の学習
- Authors: Anirban Chakraborty, Matthias Katzfuss,
- Abstract要約: 本稿では,拡張性に対するVecchia近似と組み合わせた,基底のパラメトリックガウス族に対するマップ成分の縮小を提案する。
結果として得られたShrinkTMアプローチは、特に少数のトレーニングサンプルにおいて、既存のBTMよりも正確である。
我々はShrinkTMの利点を実証するが、シミュレーションデータと気候モデル出力について数値実験を行う。
- 参考スコア(独自算出の注目度): 4.046743827445768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many applications, including climate-model analysis and stochastic weather generators, require learning or emulating the distribution of a high-dimensional and non-Gaussian spatial field based on relatively few training samples. To address this challenge, a recently proposed Bayesian transport map (BTM) approach consists of a triangular transport map with nonparametric Gaussian-process (GP) components, which is trained to transform the distribution of interest distribution to a Gaussian reference distribution. To improve the performance of this existing BTM, we propose to shrink the map components toward a ``base'' parametric Gaussian family combined with a Vecchia approximation for scalability. The resulting ShrinkTM approach is more accurate than the existing BTM, especially for small numbers of training samples. It can even outperform the ``base'' family when trained on a single sample of the spatial field. We demonstrate the advantage of ShrinkTM though numerical experiments on simulated data and on climate-model output.
- Abstract(参考訳): 気候モデル解析や確率的気象発生装置を含む多くの応用は、比較的少数のトレーニングサンプルに基づいて高次元および非ガウス空間の分布を学習またはエミュレートする必要がある。
この課題に対処するために、最近提案されたベイズ輸送マップ(BTM)アプローチは、非パラメトリックガウス過程(GP)成分を持つ三角形の輸送マップで構成され、利息分布の分布をガウス基準分布に変換するように訓練されている。
本稿では,この既存のBTMの性能向上のために,拡張性に対するVecchia近似と組み合わせた'base'パラメトリックガウス系へのマップ成分の縮小を提案する。
結果として得られたShrinkTMアプローチは、特に少数のトレーニングサンプルにおいて、既存のBTMよりも正確である。
空間フィールドの単一のサンプルでトレーニングすると、‘base’ファミリーよりもパフォーマンスが良くなります。
我々はShrinkTMの利点を実証するが、シミュレーションデータと気候モデル出力について数値実験を行う。
関連論文リスト
- Conditional simulation via entropic optimal transport: Toward non-parametric estimation of conditional Brenier maps [13.355769319031184]
条件付きシミュレーションは統計モデリングの基本的な課題である。
1つの有望なアプローチは条件付きブレニエ写像を構築することである。
等方的最適輸送の計算スケーラビリティに基づく条件付きブレニエ写像の非パラメトリック推定器を提案する。
論文 参考訳(メタデータ) (2024-11-11T17:32:47Z) - Amortized Bayesian Local Interpolation NetworK: Fast covariance parameter estimation for Gaussian Processes [0.04660328753262073]
高速な共分散パラメータ推定のための補正ベイズ局所補間ネットWorKを提案する。
これらのネットワークの高速な予測時間により、行列の反転ステップをバイパスし、大きな計算スピードアップを発生させることができる。
拡張性のあるGP手法に比べて計算効率が大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-11-10T01:26:16Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Entropy-MCMC: Sampling from Flat Basins with Ease [10.764160559530849]
我々は, シャープモードから解放された円滑な後円板に類似した定常分布である補助誘導変数を導入し, MCMC試料を平らな盆地に導出する。
この導出変数をモデルパラメータと統合することにより、計算オーバーヘッドを最小限に抑えた効率的なサンプリングを可能にする、単純なジョイント分布を作成する。
実験により,提案手法は後方の平らな盆地から試料を採取し,比較したベースラインを複数ベンチマークで比較した。
論文 参考訳(メタデータ) (2023-10-09T04:40:20Z) - Langevin Monte Carlo for Contextual Bandits [72.00524614312002]
Langevin Monte Carlo Thompson Sampling (LMC-TS) が提案されている。
提案アルゴリズムは,文脈的帯域幅の特別な場合において,最高のトンプソンサンプリングアルゴリズムと同じサブ線形残差を達成できることを示す。
論文 参考訳(メタデータ) (2022-06-22T17:58:23Z) - Unrolling Particles: Unsupervised Learning of Sampling Distributions [102.72972137287728]
粒子フィルタリングは複素系の優れた非線形推定を計算するために用いられる。
粒子フィルタは様々なシナリオにおいて良好な推定値が得られることを示す。
論文 参考訳(メタデータ) (2021-10-06T16:58:34Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z) - On the representation and learning of monotone triangular transport maps [1.0128808054306186]
滑らかな関数による単調三角写像を表現するための枠組みを提案する。
本稿では,この枠組みを接合密度推定や条件密度推定にどのように適用できるかを示す。
このフレームワークは、様々なサンプルサイズで安定した性能を持つ、可能性のない推論モデルに適用することができる。
論文 参考訳(メタデータ) (2020-09-22T03:41:45Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
局所的な特徴は、ポイント・ツー・ポイント対応ではなく、リージョン・ツー・リージョンを提供する。
本稿では,全モデル推定パイプラインにおいて,地域間マッチングを効果的に活用するためのガイドラインを提案する。
実験により、アフィンソルバはより高速な実行時にポイントベースソルバに匹敵する精度を達成できることが示された。
論文 参考訳(メタデータ) (2020-07-20T12:07:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。