論文の概要: Decoding Android Malware with a Fraction of Features: An Attention-Enhanced MLP-SVM Approach
- arxiv url: http://arxiv.org/abs/2409.19234v1
- Date: Sat, 28 Sep 2024 04:42:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 00:28:26.051664
- Title: Decoding Android Malware with a Fraction of Features: An Attention-Enhanced MLP-SVM Approach
- Title(参考訳): 特徴分別によるAndroidマルウェアのデコード:注意力強化型MLP-SVMアプローチ
- Authors: Safayat Bin Hakim, Muhammad Adil, Kamal Acharya, Houbing Herbert Song,
- Abstract要約: 本稿では,Androidのマルウェア検出と分類をより効果的にするために,MLP(Multi-Layer Perceptron)とSVM(Support Vector Machine)を統合した新しいフレームワークを提案する。
CCCS-CIC-Mal-2020データセットで利用可能な9,760件のうち、47件の機能を慎重に分析することにより、悪意のあるアプリケーションを特定する上で99%以上の精度を達成できる。
- 参考スコア(独自算出の注目度): 2.6405272164817513
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The escalating sophistication of Android malware poses significant challenges to traditional detection methods, necessitating innovative approaches that can efficiently identify and classify threats with high precision. This paper introduces a novel framework that synergistically integrates an attention-enhanced Multi-Layer Perceptron (MLP) with a Support Vector Machine (SVM) to make Android malware detection and classification more effective. By carefully analyzing a mere 47 features out of over 9,760 available in the comprehensive CCCS-CIC-AndMal-2020 dataset, our MLP-SVM model achieves an impressive accuracy over 99% in identifying malicious applications. The MLP, enhanced with an attention mechanism, focuses on the most discriminative features and further reduces the 47 features to only 14 components using Linear Discriminant Analysis (LDA). Despite this significant reduction in dimensionality, the SVM component, equipped with an RBF kernel, excels in mapping these components to a high-dimensional space, facilitating precise classification of malware into their respective families. Rigorous evaluations, encompassing accuracy, precision, recall, and F1-score metrics, confirm the superiority of our approach compared to existing state-of-the-art techniques. The proposed framework not only significantly reduces the computational complexity by leveraging a compact feature set but also exhibits resilience against the evolving Android malware landscape.
- Abstract(参考訳): Androidマルウェアの高度化は、従来の検出方法に重大な課題をもたらし、高い精度で脅威を効果的に識別し分類できる革新的なアプローチを必要としている。
本稿では,Androidのマルウェア検出と分類をより効果的にするために,注目度を高めるマルチレイヤ・パーセプトロン(MLP)とサポートベクトルマシン(SVM)を相乗的に統合する新しいフレームワークを提案する。
CCCS-CIC-AndMal-2020データセットで利用可能な9,760件のうち、47件の機能を慎重に分析することにより、我々のMLP-SVMモデルは悪意のあるアプリケーションを特定する上で99%以上の精度で達成できる。
MLPは、注意機構によって強化され、最も識別性の高い特徴に焦点を当て、さらにLDA(Linear Discriminant Analysis)を使用して47の機能をわずか14のコンポーネントに減らした。
この次元の大幅な減少にもかかわらず、RBFカーネルを備えたSVMコンポーネントは、これらのコンポーネントを高次元空間にマッピングし、マルウェアをそれぞれのファミリーに正確に分類するのに役立つ。
精度、精度、リコール、F1スコアの指標を含む厳密な評価は、既存の最先端技術と比較して、我々のアプローチの優位性を確認します。
提案するフレームワークは,コンパクトな機能セットを活用することで,計算処理の複雑さを著しく低減するだけでなく,進化するAndroidマルウェアのランドスケープに対してレジリエンスを示す。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - Improving Adversarial Robustness in Android Malware Detection by Reducing the Impact of Spurious Correlations [3.7937308360299116]
機械学習(ML)は、Androidのマルウェア検出(AMD)において大きな進歩を見せている。
しかし、現実的な回避攻撃に対するMLのレジリエンスは、AMDにとって大きな障害である。
本研究では,マルウェアサンプルとAEの分布を調整することで,AMDの一般化性を向上させるための領域適応手法を提案する。
論文 参考訳(メタデータ) (2024-08-27T17:01:12Z) - A Universal Class of Sharpness-Aware Minimization Algorithms [57.29207151446387]
我々は、新しいシャープネス尺度を導入し、新しいシャープネス対応目標関数を導出する。
これらの測度がテキスト的に表現可能であることを証明し、トレーニング損失ヘッセン行列の任意の関数を適切なハイパーおよび行列式で表すことを可能にする。
論文 参考訳(メタデータ) (2024-06-06T01:52:09Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Comprehensive evaluation of Mal-API-2019 dataset by machine learning in malware detection [0.5475886285082937]
本研究では,機械学習技術を用いたマルウェア検出の徹底的な検討を行う。
その目的は、脅威をより効果的に識別し緩和することで、サイバーセキュリティの能力を向上させることである。
論文 参考訳(メタデータ) (2024-03-04T17:22:43Z) - Discovering Malicious Signatures in Software from Structural
Interactions [7.06449725392051]
本稿では,ディープラーニング,数学的手法,ネットワーク科学を活用する新しいマルウェア検出手法を提案する。
提案手法は静的および動的解析に焦点をあて,LLVM(Lower-Level Virtual Machine)を用いて複雑なネットワーク内のアプリケーションをプロファイリングする。
弊社のアプローチは、マルウェアの検出を大幅に改善し、より正確で効率的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-12-19T23:42:20Z) - DefectHunter: A Novel LLM-Driven Boosted-Conformer-based Code Vulnerability Detection Mechanism [3.9377491512285157]
DefectHunterは、Conformerメカニズムを利用した脆弱性識別のための革新的なモデルである。
このメカニズムは、畳み込みネットワークと自己意識を融合させ、局所的、位置的特徴とグローバル的、コンテンツに基づく相互作用の両方をキャプチャする。
論文 参考訳(メタデータ) (2023-09-27T00:10:29Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Sequential Embedding-based Attentive (SEA) classifier for malware
classification [1.290382979353427]
我々は、最先端自然言語処理(NLP)技術を用いたマルウェア検出のソリューションを考案した。
提案モデルでは,それぞれ99.13パーセント,0.04パーセントの精度とログ損失スコアをベンチマークデータセットで検証した。
論文 参考訳(メタデータ) (2023-02-11T15:48:16Z) - Towards a Fair Comparison and Realistic Design and Evaluation Framework
of Android Malware Detectors [63.75363908696257]
一般的な評価フレームワークを用いて,Androidのマルウェア検出に関する10の研究成果を分析した。
データセットの作成やデザイナの設計に考慮しない場合、トレーニングされたMLモデルに大きく影響する5つの要因を特定します。
その結果,MLに基づく検出器は楽観的に評価され,良好な結果が得られた。
論文 参考訳(メタデータ) (2022-05-25T08:28:08Z) - Learning with Multiclass AUC: Theory and Algorithms [141.63211412386283]
ROC曲線 (AUC) の下の領域は、不均衡学習やレコメンダシステムといった問題に対するよく知られたランキング基準である。
本稿では,マルチクラスAUCメトリクスを最適化することで,多クラススコアリング関数を学習する問題について検討する。
論文 参考訳(メタデータ) (2021-07-28T05:18:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。