論文の概要: Co-design of a novel CMOS highly parallel, low-power, multi-chip neural network accelerator
- arxiv url: http://arxiv.org/abs/2409.19389v1
- Date: Sat, 28 Sep 2024 15:47:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 23:38:55.237483
- Title: Co-design of a novel CMOS highly parallel, low-power, multi-chip neural network accelerator
- Title(参考訳): CMOS高並列低消費電力マルチチップニューラルネットワークアクセラレータの共設計
- Authors: W Hokenmaier, R Jurasek, E Bowen, R Granger, D Odom,
- Abstract要約: 我々は,並列処理(>10X)を大幅に高速化し,消費電力を大幅に削減する新しい低消費電力ASICAIプロセッサであるNV-1を提案する。
結果のデバイスは、現在、フィールド化されたエッジセンサーアプリケーションで使用されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Why do security cameras, sensors, and siri use cloud servers instead of on-board computation? The lack of very-low-power, high-performance chips greatly limits the ability to field untethered edge devices. We present the NV-1, a new low-power ASIC AI processor that greatly accelerates parallel processing (> 10X) with dramatic reduction in energy consumption (> 100X), via many parallel combined processor-memory units, i.e., a drastically non-von-Neumann architecture, allowing very large numbers of independent processing streams without bottlenecks due to typical monolithic memory. The current initial prototype fab arises from a successful co-development effort between algorithm- and software-driven architectural design and VLSI design realities. An innovative communication protocol minimizes power usage, and data transport costs among nodes were vastly reduced by eliminating the address bus, through local target address matching. Throughout the development process, the software and architecture teams were able to innovate alongside the circuit design team's implementation effort. A digital twin of the proposed hardware was developed early on to ensure that the technical implementation met the architectural specifications, and indeed the predicted performance metrics have now been thoroughly verified in real hardware test data. The resulting device is currently being used in a fielded edge sensor application; additional proofs of principle are in progress demonstrating the proof on the ground of this new real-world extremely low-power high-performance ASIC device.
- Abstract(参考訳): なぜセキュリティカメラやセンサー、サイリは、オンボードの計算ではなくクラウドサーバーを使うのか?
非常に低消費電力で高性能なチップの欠如は、非テザリングエッジデバイスのフィールド能力を大幅に制限した。
NV-1は、並列処理(>10X)を大幅に高速化し、エネルギー消費を劇的に削減する(>100X)新しい低消費電力ASICAIプロセッサである。
現在のプロトタイプファブは、アルゴリズムとソフトウェア駆動アーキテクチャ設計とVLSI設計の協調開発に成功している。
革新的な通信プロトコルは、電力使用量を最小化し、ローカルなターゲットアドレスマッチングを通じてアドレスバスを排除し、ノード間のデータ転送コストを大幅に削減した。
開発プロセス全体を通じて、ソフトウェアとアーキテクチャチームは、サーキット設計チームの実装活動と並行して革新を行うことができた。
提案したハードウェアのディジタルツインが早期に開発され、技術的実装がアーキテクチャの仕様を満たしていることを確認するとともに、予測された性能指標が実際のハードウェアテストデータで完全に検証されている。
このデバイスは現在、電界センサアプリケーションで使われており、この新しい現実世界の超低消費電力のASICデバイスを根拠として、さらなる原理実証が進行中である。
関連論文リスト
- Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
デジタルコンピュータにおける従来の信号再構成手法は、ソフトウェアとハードウェアの両方の課題に直面している。
本稿では,スパース入力からの信号再構成のためのソフトウェア・ハードウェア協調最適化を用いた体系的アプローチを提案する。
この研究は、AI駆動の信号復元技術を進歩させ、将来の効率的で堅牢な医療AIと3Dビジョンアプリケーションへの道を開く。
論文 参考訳(メタデータ) (2024-04-15T09:33:09Z) - REED: Chiplet-Based Accelerator for Fully Homomorphic Encryption [4.713756093611972]
本稿では,従来のモノリシック設計の限界を克服する,マルチチップベースのFHEアクセラレータREEDについて紹介する。
その結果、REED 2.5Dマイクロプロセッサはチップ面積96.7 mm$2$、平均電力49.4Wを7nm技術で消費していることがわかった。
論文 参考訳(メタデータ) (2023-08-05T14:04:39Z) - MAPLE-X: Latency Prediction with Explicit Microprocessor Prior Knowledge [87.41163540910854]
ディープニューラルネットワーク(DNN)レイテンシのキャラクタリゼーションは、時間を要するプロセスである。
ハードウェアデバイスの事前知識とDNNアーキテクチャのレイテンシを具体化し,MAPLEを拡張したMAPLE-Xを提案する。
論文 参考訳(メタデータ) (2022-05-25T11:08:20Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - MAPLE: Microprocessor A Priori for Latency Estimation [81.91509153539566]
現代のディープニューラルネットワークは、低レイテンシとエネルギー消費を示しながら最先端の精度を示す必要がある。
評価されたアーキテクチャのレイテンシの測定は、NASプロセスにかなりの時間を加えます。
転送学習やドメイン適応に依存しない推定用マイクロプロセッサAプライオリティを提案する。
論文 参考訳(メタデータ) (2021-11-30T03:52:15Z) - Resistive Neural Hardware Accelerators [0.46198289193451136]
ReRAMベースのインメモリコンピューティングは、領域と電力効率のよい推論の実装において大きな可能性を秘めている。
ReRAMベースのインメモリコンピューティングへの移行は、領域と電力効率のよい推論の実装において大きな可能性を秘めている。
本稿では,最先端のReRAMベースディープニューラルネットワーク(DNN)多コアアクセラレータについて概説する。
論文 参考訳(メタデータ) (2021-09-08T21:11:48Z) - From DNNs to GANs: Review of efficient hardware architectures for deep
learning [0.0]
ニューラルネットワークとディープラーニングが現在の研究パラダイムに影響を与え始めている。
DSPプロセッサは、ニューラルネットワーク、アクティベーション機能、畳み込みニューラルネットワーク、生成的敵ネットワーク操作を実行することができない。
異なるアルゴリズムは、ニューラルネットワーク、アクティベーション機能、畳み込みニューラルネットワーク、生成対向ネットワークにおける高速なパフォーマンスに適合するDSPプロセッサを設計するために適合している。
論文 参考訳(メタデータ) (2021-06-06T13:23:06Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
ディセンス光学フロー推定は、多くのロボットビジョンタスクで重要な役割を果たしています。
現在のネットワークはしばしば多くのパラメータを占有し、計算コストがかかる。
提案したFastFlowNetは、周知の粗大なやり方で、以下のイノベーションで機能する。
論文 参考訳(メタデータ) (2021-03-08T03:09:37Z) - DANCE: Differentiable Accelerator/Network Co-Exploration [8.540518473228078]
この研究は、ハードウェアアクセラレーターとネットワークアーキテクチャ設計の共同探索に向けた異なるアプローチを示す。
ハードウェア評価ソフトウェアをニューラルネットワークでモデル化することにより、アクセラレーションアーキテクチャとハードウェアメトリクスの関係は微分可能となる。
提案手法は,既存手法と比較して,精度とハードウェアコストの指標を向上しつつ,比較的短い時間で共同探索を行う。
論文 参考訳(メタデータ) (2020-09-14T07:43:27Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
高速で低エネルギーのコンピュータは、エッジでリアルタイム人工知能を実現するために要求されている。
ワンステップ学習は、ボストンの住宅のコスト予測と、MNIST桁認識のための2層ニューラルネットワークのトレーニングによって支援される。
結果は、クロスポイントアレイ内の物理計算、並列計算、アナログ計算のおかげで、1つの計算ステップで得られる。
論文 参考訳(メタデータ) (2020-05-05T08:00:07Z) - Near-Optimal Hardware Design for Convolutional Neural Networks [0.0]
本研究では,畳み込みニューラルネットワークのための新しい,特殊目的,高効率ハードウェアアーキテクチャを提案する。
提案アーキテクチャは,モデルの計算フローと同じ構造を持つ計算回路を設計することにより,乗算器の利用を最大化する。
提案するハードウェアアーキテクチャに基づく実装が,商用AI製品に適用されている。
論文 参考訳(メタデータ) (2020-02-06T09:15:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。