論文の概要: PPLNs: Parametric Piecewise Linear Networks for Event-Based Temporal Modeling and Beyond
- arxiv url: http://arxiv.org/abs/2409.19772v1
- Date: Sun, 29 Sep 2024 20:45:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 17:39:51.768664
- Title: PPLNs: Parametric Piecewise Linear Networks for Event-Based Temporal Modeling and Beyond
- Title(参考訳): PPLNs: イベントベース時間モデリングのためのパラメトリックピスワイズ線形ネットワーク
- Authors: Chen Song, Zhenxiao Liang, Bo Sun, Qixing Huang,
- Abstract要約: 時間的視覚推定のためのPPLN(Parametric Piecewise Linear Networks)を提案する。
PPLNは、生物学的神経行動を制御する神経型原理に動機付けられ、イベントカメラが捉えたデータを処理するのに理想的である。
- 参考スコア(独自算出の注目度): 25.2310477913357
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Parametric Piecewise Linear Networks (PPLNs) for temporal vision inference. Motivated by the neuromorphic principles that regulate biological neural behaviors, PPLNs are ideal for processing data captured by event cameras, which are built to simulate neural activities in the human retina. We discuss how to represent the membrane potential of an artificial neuron by a parametric piecewise linear function with learnable coefficients. This design echoes the idea of building deep models from learnable parametric functions recently popularized by Kolmogorov-Arnold Networks (KANs). Experiments demonstrate the state-of-the-art performance of PPLNs in event-based and image-based vision applications, including steering prediction, human pose estimation, and motion deblurring. The source code of our implementation is available at https://github.com/chensong1995/PPLN.
- Abstract(参考訳): 時間的視覚推定のためのPPLN(Parametric Piecewise Linear Networks)を提案する。
PPLNは、生物学的な神経行動を制御する神経型原理に動機付けられ、ヒト網膜の神経活動をシミュレートするために構築されたイベントカメラによってキャプチャされたデータを処理するのに理想的である。
本稿では, 学習可能な係数を持つパラメトリック片方向線形関数を用いて, 人工ニューロンの膜電位を表現する方法について論じる。
この設計は、最近KAN(Kolmogorov-Arnold Networks)によって普及した学習可能なパラメトリック関数からディープモデルを構築するという考え方を反映している。
イベントベースおよび画像ベース視覚アプリケーションにおけるPPLNの最先端性能を示す実験は、ステアリング予測、人間のポーズ推定、動きの鈍化などである。
実装のソースコードはhttps://github.com/chensong 1995/PPLN.comで公開されています。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - EvSegSNN: Neuromorphic Semantic Segmentation for Event Data [0.6138671548064356]
EvSegSNN は、Parametric Leaky Integrate と Fire のニューロンに依存した、生物学的に検証可能なエンコーダ-デコーダU字型アーキテクチャである。
本稿では,スパイキングニューラルネットワークとイベントカメラを組み合わせることによって,エンド・ツー・エンドのバイオインスパイアされたセマンティックセマンティックセマンティクス手法を提案する。
DDD17で実施された実験は、EvSegSNNがMIoUの観点から最も近い最先端モデルを上回っていることを示している。
論文 参考訳(メタデータ) (2024-06-20T10:36:24Z) - P-SpikeSSM: Harnessing Probabilistic Spiking State Space Models for Long-Range Dependency Tasks [1.9775291915550175]
スパイキングニューラルネットワーク(SNN)は、従来のニューラルネットワークに代わる計算効率が高く生物学的に妥当な代替品として提案されている。
長距離依存タスクのためのスケーラブルな確率的スパイク学習フレームワークを開発した。
我々のモデルは、様々な長距離依存タスクにまたがるSNNモデル間の最先端性能を実現する。
論文 参考訳(メタデータ) (2024-06-05T04:23:11Z) - WaLiN-GUI: a graphical and auditory tool for neuron-based encoding [73.88751967207419]
ニューロモルフィックコンピューティングはスパイクベースのエネルギー効率の高い通信に依存している。
本研究では, スパイクトレインへのサンプルベースデータの符号化に適した構成を同定するツールを開発した。
WaLiN-GUIはオープンソースとドキュメントが提供されている。
論文 参考訳(メタデータ) (2023-10-25T20:34:08Z) - A Physics-Informed Neural Network to Model Port Channels [0.09830751917335563]
PINNモデルは、物理システムとデータ駆動機械学習モデルの知識を組み合わせることを目的としている。
まず,従来のシミュレーション手法では実現不可能な周期的な流れを仮定するために,本モデルの設計を行う。
第2に、計算コストがほぼゼロに近いトレーニング中に関数評価点を再サンプリングする利点を評価する。
論文 参考訳(メタデータ) (2022-12-20T22:53:19Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Neural net modeling of equilibria in NSTX-U [0.0]
我々は平衡モデルと形状制御モデルに関連する2つのニューラルネットワークを開発する。
ネットワークにはEFIT01再構成アルゴリズムでトレーニングされた自由境界均衡解法であるEqnetと、Gspert符号でトレーニングされたPertnetが含まれる。
本報告では,これらのモデルが閉ループシミュレーションで確実に使用できることを示す。
論文 参考訳(メタデータ) (2022-02-28T16:09:58Z) - Modeling the Nonsmoothness of Modern Neural Networks [35.93486244163653]
ピークの大きさの和(SMP)という特徴を用いて不滑らかさを定量化する。
この非平滑性機能は、ニューラルネットワークの回帰ベースのアプリケーションのためのフォレンジックツールとして利用される可能性があると考えます。
論文 参考訳(メタデータ) (2021-03-26T20:55:19Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。