論文の概要: Increasing NWP Thunderstorm Predictability Using Ensemble Data and Machine Learning
- arxiv url: http://arxiv.org/abs/2502.13316v1
- Date: Tue, 18 Feb 2025 22:18:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:58:54.101158
- Title: Increasing NWP Thunderstorm Predictability Using Ensemble Data and Machine Learning
- Title(参考訳): アンサンブルデータと機械学習を用いたNWP雷雨の予測可能性の向上
- Authors: Kianusch Vahid Yousefnia, Tobias Bölle, Christoph Metzl,
- Abstract要約: 我々は,NWPデータと機械学習(ML)のアンサンブルによって,雷雨予報のスキルが向上することを示す。
11時間のアンサンブル予測は、5時間の決定論的予測のスキルレベルと一致する。
SALAMA 1DのようなMLモデルは、長いリードタイムの間予測可能な雷雨の発生パターンを特定することができる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: While numerical weather prediction (NWP) models are essential for forecasting thunderstorms hours in advance, NWP uncertainty, which increases with lead time, limits the predictability of thunderstorm occurrence. This study investigates how ensemble NWP data and machine learning (ML) can enhance the skill of thunderstorm forecasts. Using our recently introduced neural network model, SALAMA 1D, which identifies thunderstorm occurrence in operational forecasts of the convection-permitting ICON-D2-EPS model for Central Europe, we demonstrate that ensemble-averaging significantly improves forecast skill. Notably, an 11-hour ensemble forecast matches the skill level of a 5-hour deterministic forecast. To explain this improvement, we derive an analytic expression linking skill differences to correlations between ensemble members, which aligns with observed performance gains. This expression generalizes to any binary classification model that processes ensemble members individually. Additionally, we show that ML models like SALAMA 1D can identify patterns of thunderstorm occurrence which remain predictable for longer lead times compared to raw NWP output. Our findings quantitatively explain the benefits of ensemble-averaging and encourage the development of ML methods for thunderstorm forecasting and beyond.
- Abstract(参考訳): 数値気象予報モデル(NWP)は事前に雷雨の時間を予測するのに不可欠であるが、鉛時間とともに増加するNWPの不確実性は、雷雨の発生の予測可能性を制限する。
本研究では,NWPデータと機械学習(ML)のアンサンブルが雷雨予測のスキルをいかに向上させるかを検討する。
最近導入したニューラルネットワークモデルSALAMA 1Dを用いて、中央ヨーロッパにおける対流通電ICON-D2-EPSモデルの運転予測における雷雨発生を同定し、アンサンブル・アブリッシングが予測スキルを大幅に向上することを示した。
特に、11時間のアンサンブル予測は、5時間の決定論的予測のスキルレベルと一致する。
この改善を説明するために,アンサンブルメンバー間の相関関係にスキルの違いを関連付ける解析式を導出した。
この式は、アンサンブルメンバーを個別に処理する任意のバイナリ分類モデルに一般化する。
さらに,SALAMA 1DのようなMLモデルでは,生のNWP出力と比較して長いリード時間で予測可能な雷雨発生パターンを同定できることを示した。
本研究は, アンサンブルの利点を定量的に説明し, 雷雨予報等のML手法の開発を奨励するものである。
関連論文リスト
- Inferring Thunderstorm Occurrence from Vertical Profiles of Convection-Permitting Simulations: Physical Insights from a Physical Deep Learning Model [0.0]
雷雨は激しい降水量、干ばつ、雷、強い風のために、社会と経済に大きな影響を及ぼす。
我々は,10の大気変数の垂直プロファイルから雷雨の発生確率を直接推定する深層ニューラルネットワークSALAMA 1Dを開発した。
SALAMA 1Dは、中央ヨーロッパで雷観測を基礎として訓練されている。
論文 参考訳(メタデータ) (2024-09-30T08:40:28Z) - FuXi-ENS: A machine learning model for medium-range ensemble weather forecasting [16.562512279873577]
我々は,最大15日間のグローバルアンサンブル天気予報を実現するために設計された,高度なMLモデルであるFuXi-ENSを紹介する。
FuXi-ENS は空間分解能が 0.25 度大きく向上し、13の圧力レベルで5つの大気変数と13の表面変数が組み込まれている。
その結果,FXi-ENSは360変数の98.1%のCRPSと予測リードタイムの組み合わせで,世界有数のNWPモデルであるECMWFのアンサンブル予測よりも優れていた。
論文 参考訳(メタデータ) (2024-05-09T17:15:09Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Generative ensemble deep learning severe weather prediction from a
deterministic convection-allowing model [0.0]
コンボリューション・ニューラル・ネットワーク(CNN)とコンボリューション・コンボリューション・アロイング・モデル(CAM)予測を併用する。
CGANは決定論的CAM予測から合成アンサンブルメンバーを作成するように設計されている。
この手法は,BSS(Brier Skill Score)を最大20%の精度で予測できる。
論文 参考訳(メタデータ) (2023-10-09T18:02:11Z) - A machine-learning approach to thunderstorm forecasting through post-processing of simulation data [0.0]
雷雨は社会や経済に危険をもたらし、信頼できる雷雨予報を要求する。
本研究では,数値天気予報(NWP)データから雷雨の発生を識別するフィードフォワードニューラルネットワークモデルである,SALAMA(Machine Central Learning)を用いた行動同定のための署名ベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-03-15T16:21:15Z) - Feature-weighted Stacking for Nonseasonal Time Series Forecasts: A Case
Study of the COVID-19 Epidemic Curves [0.0]
本研究では,非シーズン時間帯での利用可能性について,予測におけるアンサンブル手法について検討する。
予備予測段階における予測能力を証明する2つの予測モデルと2つのメタ機能からなる重畳アンサンブルを用いて遅延データ融合を提案する。
論文 参考訳(メタデータ) (2021-08-19T14:44:46Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Improving Event Duration Prediction via Time-aware Pre-training [90.74988936678723]
持続時間予測に有効な2つのモデルを提案する。
1つのモデルは、期間値が該当する範囲/単位を予測し(R−pred)、もう1つのモデルは正確な期間値E−predを予測する。
我々の最良のモデル -- E-pred は、以前の作業よりも大幅に優れ、R-pred よりも正確に持続時間情報をキャプチャします。
論文 参考訳(メタデータ) (2020-11-05T01:52:11Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。