論文の概要: Continuous-Time Linear Positional Embedding for Irregular Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2409.20092v1
- Date: Mon, 30 Sep 2024 08:46:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 18:56:57.485357
- Title: Continuous-Time Linear Positional Embedding for Irregular Time Series Forecasting
- Title(参考訳): 不規則時系列予測のための連続時間線形位置埋め込み
- Authors: Byunghyun Kim, Jae-Gil Lee,
- Abstract要約: 時間情報を符号化する連続線形関数を学習するCTLPEを提案する。
CTLPEは、様々な不規則にサンプリングされた時系列データセットで既存の技術より優れている。
- 参考スコア(独自算出の注目度): 14.038703353884033
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Irregularly sampled time series forecasting, characterized by non-uniform intervals, is prevalent in practical applications. However, previous research have been focused on regular time series forecasting, typically relying on transformer architectures. To extend transformers to handle irregular time series, we tackle the positional embedding which represents the temporal information of the data. We propose CTLPE, a method learning a continuous linear function for encoding temporal information. The two challenges of irregular time series, inconsistent observation patterns and irregular time gaps, are solved by learning a continuous-time function and concise representation of position. Additionally, the linear continuous function is empirically shown superior to other continuous functions by learning a neural controlled differential equation-based positional embedding, and theoretically supported with properties of ideal positional embedding. CTLPE outperforms existing techniques across various irregularly-sampled time series datasets, showcasing its enhanced efficacy.
- Abstract(参考訳): 不規則にサンプリングされた時系列予測は、非一様間隔で特徴付けられるが、実際的な応用では一般的である。
しかし、以前の研究では、典型的にはトランスフォーマーアーキテクチャに依存する通常の時系列予測に焦点が当てられていた。
不規則な時系列を扱うためにトランスを拡張するために、データの時間的情報を表す位置埋め込みに取り組む。
時間情報を符号化する連続線形関数を学習するCTLPEを提案する。
非一貫性な観測パターンと不規則な時間ギャップの2つの課題は、連続時間関数の学習と位置の簡潔な表現によって解決される。
さらに、線形連続函数は、神経制御された微分方程式に基づく位置埋め込みを学習することにより、他の連続函数よりも経験的に優れ、理想的な位置埋め込みの特性で理論的に支持される。
CTLPEは、様々な不規則にサンプリングされた時系列データセットで既存の技術より優れており、その強化された有効性を示している。
関連論文リスト
- Adaptive Convolutional Forecasting Network Based on Time Series Feature-Driven [9.133955922897371]
実世界のシナリオにおける時系列データは、かなりの量の非線形情報を含んでいる。
マルチレゾリューション畳み込み演算と変形可能な畳み込み演算を導入する。
本稿では,局所的およびグローバルな時間的依存関係を効果的にモデル化する適応型畳み込みネットワークACNetを提案する。
論文 参考訳(メタデータ) (2024-05-20T14:05:35Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Compatible Transformer for Irregularly Sampled Multivariate Time Series [75.79309862085303]
本研究では,各サンプルに対して総合的な時間的相互作用特徴学習を実現するためのトランスフォーマーベースのエンコーダを提案する。
実世界の3つのデータセットについて広範な実験を行い、提案したCoFormerが既存の手法を大幅に上回っていることを検証した。
論文 参考訳(メタデータ) (2023-10-17T06:29:09Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
モデルの新しい設計に基づく新しい生成フレームワークであるKoopman VAEを紹介する。
クープマン理論に触発され、線形写像を用いて潜在条件事前力学を表現する。
KoVAEは、いくつかの挑戦的な合成および実世界の時系列生成ベンチマークにおいて、最先端のGANおよびVAEメソッドより優れている。
論文 参考訳(メタデータ) (2023-10-04T07:14:43Z) - DRAformer: Differentially Reconstructed Attention Transformer for
Time-Series Forecasting [7.805077630467324]
時系列予測は、機器ライフサイクル予測、天気予報、交通フロー予測など、多くの現実シナリオにおいて重要な役割を果たす。
最近の研究から、様々なトランスフォーマーモデルが時系列予測において顕著な結果を示したことが観察できる。
しかし、時系列予測タスクにおけるトランスフォーマーモデルの性能を制限する問題がまだ残っている。
論文 参考訳(メタデータ) (2022-06-11T10:34:29Z) - Triformer: Triangular, Variable-Specific Attentions for Long Sequence
Multivariate Time Series Forecasting--Full Version [50.43914511877446]
本稿では,高い効率と精度を確保するために,三角形,可変特性に着目した注意点を提案する。
我々はTriformerが精度と効率の両方で最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-04-28T20:41:49Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - AutoFITS: Automatic Feature Engineering for Irregular Time Series [0.44198435146063353]
不規則な時系列では、各観測が収集される時間はデータのダイナミクスを要約し、予測性能を向上させるのに役立つ。
我々は,各インスタンスが収集された際に,この視点から情報を抽出することに焦点を当てた,新しい自動機能エンジニアリングフレームワークを開発する。
時系列予測ワークフローに組み込むことによって,この情報の価値を検証し,時系列予測のための最新手法との比較や補完方法について検討する。
論文 参考訳(メタデータ) (2021-12-29T19:42:48Z) - Time Series is a Special Sequence: Forecasting with Sample Convolution
and Interaction [9.449017120452675]
時系列データ(英: time series)とは、時系列データの一種で、時系列で記録された観測の集合である。
既存のディープラーニング技術では、時系列解析にジェネリックシーケンスモデルを使用しており、そのユニークな性質を無視している。
本稿では,新しいニューラルネットワークアーキテクチャを提案し,時系列予測問題に適用し,時間的モデリングのための複数の解像度でサンプル畳み込みと相互作用を行う。
論文 参考訳(メタデータ) (2021-06-17T08:15:04Z) - Interpretable Feature Construction for Time Series Extrinsic Regression [0.028675177318965035]
一部のアプリケーション領域では、対象変数が数値であり、その問題は時系列外部回帰(TSER)として知られている。
TSERの文脈における頑健で解釈可能な特徴構築と選択のためのベイズ法の拡張を提案する。
私たちのアプローチは、TSERに取り組むためのリレーショナルな方法を利用します:(i)、リレーショナルデータスキームに格納されている時系列の多様で単純な表現を構築し、(ii)二次テーブルからデータを「フラット化」するために解釈可能な機能を構築するためにプロポジション化技術を適用します。
論文 参考訳(メタデータ) (2021-03-15T08:12:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。