論文の概要: Dynamic neurons: A statistical physics approach for analyzing deep neural networks
- arxiv url: http://arxiv.org/abs/2410.00396v1
- Date: Tue, 1 Oct 2024 04:39:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 05:56:31.250849
- Title: Dynamic neurons: A statistical physics approach for analyzing deep neural networks
- Title(参考訳): 動的ニューロン:ディープニューラルネットワーク解析のための統計物理学的アプローチ
- Authors: Donghee Lee, Hye-Sung Lee, Jaeok Yi,
- Abstract要約: 我々は、ニューロンを相互作用の自由度として扱い、ディープニューラルネットワークの構造を単純化する。
翻訳対称性と再正規化群変換を利用することで、臨界現象を解析できる。
このアプローチは、統計物理学を用いてディープニューラルネットワークを研究するための新しい道を開くかもしれない。
- 参考スコア(独自算出の注目度): 1.9662978733004601
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural network architectures often consist of repetitive structural elements. We introduce a new approach that reveals these patterns and can be broadly applied to the study of deep learning. Similar to how a power strip helps untangle and organize complex cable connections, this approach treats neurons as additional degrees of freedom in interactions, simplifying the structure and enhancing the intuitive understanding of interactions within deep neural networks. Furthermore, it reveals the translational symmetry of deep neural networks, which simplifies the application of the renormalization group transformation - a method that effectively analyzes the scaling behavior of the system. By utilizing translational symmetry and renormalization group transformations, we can analyze critical phenomena. This approach may open new avenues for studying deep neural networks using statistical physics.
- Abstract(参考訳): ディープニューラルネットワークアーキテクチャは、しばしば反復的な構造要素から構成される。
我々はこれらのパターンを明らかにする新しいアプローチを導入し、ディープラーニングの研究に広く適用することができる。
電力ストリップが複雑なケーブル接続を解き放つのと同じように、このアプローチは神経細胞を相互作用の自由度として扱い、構造を単純化し、ディープニューラルネットワーク内の相互作用の直感的な理解を強化する。
さらに、システムのスケーリング挙動を効果的に解析する手法である再正規化グループ変換の適用を単純化するディープニューラルネットワークの翻訳対称性を明らかにする。
翻訳対称性と再正規化群変換を利用することで、臨界現象を解析できる。
このアプローチは、統計物理学を用いてディープニューラルネットワークを研究するための新しい道を開くかもしれない。
関連論文リスト
- Collective variables of neural networks: empirical time evolution and scaling laws [0.535514140374842]
実験的なニューラル・タンジェント・カーネルのスペクトル、特にエントロピーとトレースのスペクトルに対する特定の測定により、ニューラルネットワークが学習した表現についての洞察が得られることを示す。
結果は、トランスフォーマー、オートエンコーダ、グラフニューラルネットワーク、強化学習研究など、より複雑なネットワークで示される前に、まずテストケースで実証される。
論文 参考訳(メタデータ) (2024-10-09T21:37:14Z) - Statistical tuning of artificial neural network [0.0]
本研究では、ニューラルネットワークの理解を強化する方法を紹介し、特に1つの隠蔽層を持つモデルに焦点を当てる。
本稿では,入力ニューロンの意義を統計的に評価し,次元減少のためのアルゴリズムを提案する。
この研究は、ニューラルネットワークを解釈するための堅牢な統計フレームワークを提示することにより、説明可能な人工知能の分野を前進させる。
論文 参考訳(メタデータ) (2024-09-24T19:47:03Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Introduction to dynamical mean-field theory of generic random neural
networks [2.0711789781518752]
初心者がこのツールの本質や基礎となる物理学にアクセスするのは容易ではない。
本稿では,この手法を汎用的ランダムニューラルネットワークの具体例に紹介する。
積分微分平均場方程式を解く数値的実装についても詳述する。
論文 参考訳(メタデータ) (2023-05-15T09:01:40Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Explainable artificial intelligence for mechanics: physics-informing
neural networks for constitutive models [0.0]
メカニクスにおいて、物理インフォームドニューラルネットワークの新しい活発な分野は、機械的知識に基づいてディープニューラルネットワークを設計することによって、この欠点を緩和しようとする。
本論文では,機械データに訓練されたニューラルネットワークを後述する物理形成型アプローチへの第一歩を提案する。
これにより、主成分分析はRNNの細胞状態における分散表現をデコレーションし、既知の基本関数との比較を可能にする。
論文 参考訳(メタデータ) (2021-04-20T18:38:52Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Complexity for deep neural networks and other characteristics of deep
feature representations [0.0]
ニューラルネットワークの計算の非線形性を定量化する複雑性の概念を定義する。
トレーニング対象ネットワークとトレーニング対象ネットワークの動的特性の両面から,これらのオブザーバブルについて検討する。
論文 参考訳(メタデータ) (2020-06-08T17:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。