論文の概要: Quantifying reliance on external information over parametric knowledge during Retrieval Augmented Generation (RAG) using mechanistic analysis
- arxiv url: http://arxiv.org/abs/2410.00857v1
- Date: Tue, 1 Oct 2024 16:48:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 03:46:09.193801
- Title: Quantifying reliance on external information over parametric knowledge during Retrieval Augmented Generation (RAG) using mechanistic analysis
- Title(参考訳): 機械的解析を用いたレトリーバル拡張世代(RAG)におけるパラメトリック知識の外部情報依存性の定量化
- Authors: Reshmi Ghosh, Rahul Seetharaman, Hitesh Wadhwa, Somyaa Aggarwal, Samyadeep Basu, Soundararajan Srinivasan, Wenlong Zhao, Shreyas Chaudhari, Ehsan Aghazadeh,
- Abstract要約: 本稿では,RAGパイプラインを機械的に検討し,LMが「ショートカット」効果を示すことを示す。
LLM(LlaMa)とSLM(Phi)にまたがる「ショートカット」の動作が真であることを示す。
- 参考スコア(独自算出の注目度): 6.382667978271587
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval Augmented Generation (RAG) is a widely used approach for leveraging external context in several natural language applications such as question answering and information retrieval. Yet, the exact nature in which a Language Model (LM) leverages this non-parametric memory or retrieved context isn't clearly understood. This paper mechanistically examines the RAG pipeline to highlight that LMs demonstrate a "shortcut'' effect and have a strong bias towards utilizing the retrieved context to answer questions, while relying minimally on model priors. We propose (a) Causal Mediation Analysis; for proving that parametric memory is minimally utilized when answering a question and (b) Attention Contributions and Knockouts for showing the last token residual stream do not get enriched from the subject token in the question, but gets enriched from tokens of RAG-context. We find this pronounced "shortcut'' behaviour to be true across both LLMs (e.g.,LlaMa) and SLMs (e.g., Phi)
- Abstract(参考訳): Retrieval Augmented Generation (RAG) は、質問応答や情報検索など、いくつかの自然言語アプリケーションにおいて、外部コンテキストを活用するために広く使われているアプローチである。
しかし、言語モデル(LM)がこの非パラメトリックメモリや検索されたコンテキストを活用するという正確な性質は明確には理解されていない。
本稿ではRAGパイプラインを機械的に検討し、LMが「ショートカット」効果を示し、モデル先行に最小限依存しながら、検索した文脈を利用して質問に答えることに対する強いバイアスを有することを示す。
特集にあたって
(a)因果メディエーション分析;質問に答える際に、パラメトリックメモリが最小限に活用されていることを証明するために
b)最後のトークン残差ストリームを示す注意貢献とノックアウトは、課題の主題トークンから豊かになるのではなく、RAG-contextのトークンから豊かになる。
LLM (e g ,LlaMa) と SLM (e g ,Phi) にまたがる「ショートカット」の動作が真であることを示す。
関連論文リスト
- Sufficient Context: A New Lens on Retrieval Augmented Generation Systems [19.238772793096473]
LLMをコンテキストで拡張すると、多くのアプリケーションのパフォーマンスが向上する。
我々は、クエリに答える十分な情報を持つインスタンスを分類すると共に、十分なコンテキストという新しい概念を開発する。
LLMはコンテキストが十分である場合,クエリの応答に優れるが,コンテキストが不適切でない場合,しばしば不適切な回答を出力する。
論文 参考訳(メタデータ) (2024-11-09T02:13:14Z) - RAG-ConfusionQA: A Benchmark for Evaluating LLMs on Confusing Questions [52.33835101586687]
会話AIエージェントはRetrieval Augmented Generation(RAG)を使用して、ユーザからの問い合わせに対して検証可能なドキュメント地上応答を提供する。
本稿では,与えられた文書コーパスから,文脈に乱れた多様な質問を効率的に生成する,新しい合成データ生成手法を提案する。
論文 参考訳(メタデータ) (2024-10-18T16:11:29Z) - From RAGs to rich parameters: Probing how language models utilize external knowledge over parametric information for factual queries [6.382667978271587]
Retrieval Augmented Generation (RAG) は、あるユーザプロンプトに対する応答を増やすために、外部コンテキストを使って言語モデルを推論する能力を強化する。
このアプローチは、検索、質問/回答、チャットボットにおける言語モデルの様々な応用における実践的な応用により、人気が高まっている。
本稿では,RAGパイプラインを機械的に検討し,言語モデルがショートカットをとっており,パラメトリックメモリを最小限に頼りながら,文脈情報のみを活用することに強いバイアスを持つことを示す。
論文 参考訳(メタデータ) (2024-06-18T17:46:08Z) - Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
大規模言語モデル(LLM)は、様々なNLPタスクを実行するのに効果的であるが、広範囲の現実世界の知識を必要とするタスクを扱うのに苦労する。
我々は,関連する疑問に答えるために,長期的事実の知識を必要とするベンチマークを提案する。
実験の結果,LLMだけでこれらの疑問に答えるのに苦労していることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-10T15:10:20Z) - Analyzing the Role of Semantic Representations in the Era of Large Language Models [104.18157036880287]
大規模言語モデル(LLM)の時代における意味表現の役割について検討する。
本稿では, AMRCoT と呼ばれる AMR-driven chain-of- Thought prompting 法を提案する。
AMRのどの入力例が役に立つかは予測できないが,複数単語の表現でエラーが発生する傾向にある。
論文 参考訳(メタデータ) (2024-05-02T17:32:59Z) - When to Retrieve: Teaching LLMs to Utilize Information Retrieval Effectively [3.705145020383824]
本稿では,Large Language Models (LLMs) が,与えられた質問に答えるために追加のコンテキストを必要とする場合に,既製の情報検索(IR)システムを使用する方法を示す。
論文 参考訳(メタデータ) (2024-04-30T16:52:55Z) - Blinded by Generated Contexts: How Language Models Merge Generated and Retrieved Contexts When Knowledge Conflicts? [45.233517779029334]
応答が生成されたコンテキストと検索されたコンテキストに関連付けられているかどうかを識別する。
実験では、誤った情報を提供する場合でも、生成されたコンテキストを優先する複数のLSMにおいて、重大なバイアスが示される。
論文 参考訳(メタデータ) (2024-01-22T12:54:04Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - Explaining Emergent In-Context Learning as Kernel Regression [61.57151500616111]
大規模言語モデル(LLM)は、伝達学習のパラダイムシフトを開始した。
本稿では,トランスフォーマーに基づく言語モデルが事前学習後に文脈内学習を達成できる理由について検討する。
ICL中、LLMの注意と隠れた特徴は、カーネル回帰の挙動と一致していることがわかった。
論文 参考訳(メタデータ) (2023-05-22T06:45:02Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。