論文の概要: Tackling the Accuracy-Interpretability Trade-off in a Hierarchy of Machine Learning Models for the Prediction of Extreme Heatwaves
- arxiv url: http://arxiv.org/abs/2410.00984v1
- Date: Tue, 1 Oct 2024 18:15:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 23:49:57.058445
- Title: Tackling the Accuracy-Interpretability Trade-off in a Hierarchy of Machine Learning Models for the Prediction of Extreme Heatwaves
- Title(参考訳): 極端熱波予測のための機械学習モデルの階層構造における精度・解釈可能性トレードオフの対応
- Authors: Alessandro Lovo, Amaury Lancelin, Corentin Herbert, Freddy Bouchet,
- Abstract要約: ますます複雑な機械学習モデルの階層構造を用いて、フランス上空の極端熱波の確率論的予測を行う。
CNNは高い精度を提供するが、ブラックボックスの性質は解釈可能性を大幅に制限する。
ScatNetは、透明性を高めながら、CNNと同じようなパフォーマンスを実現している。
- 参考スコア(独自算出の注目度): 41.94295877935867
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: When performing predictions that use Machine Learning (ML), we are mainly interested in performance and interpretability. This generates a natural trade-off, where complex models generally have higher skills but are harder to explain and thus trust. Interpretability is particularly important in the climate community, where we aim at gaining a physical understanding of the underlying phenomena. Even more so when the prediction concerns extreme weather events with high impact on society. In this paper, we perform probabilistic forecasts of extreme heatwaves over France, using a hierarchy of increasingly complex ML models, which allows us to find the best compromise between accuracy and interpretability. More precisely, we use models that range from a global Gaussian Approximation (GA) to deep Convolutional Neural Networks (CNNs), with the intermediate steps of a simple Intrinsically Interpretable Neural Network (IINN) and a model using the Scattering Transform (ScatNet). Our findings reveal that CNNs provide higher accuracy, but their black-box nature severely limits interpretability, even when using state-of-the-art Explainable Artificial Intelligence (XAI) tools. In contrast, ScatNet achieves similar performance to CNNs while providing greater transparency, identifying key scales and patterns in the data that drive predictions. This study underscores the potential of interpretability in ML models for climate science, demonstrating that simpler models can rival the performance of their more complex counterparts, all the while being much easier to understand. This gained interpretability is crucial for building trust in model predictions and uncovering new scientific insights, ultimately advancing our understanding and management of extreme weather events.
- Abstract(参考訳): 機械学習(ML)を使用した予測を行う場合、私たちは主にパフォーマンスと解釈可能性に興味を持っています。
複雑なモデルは一般的に高いスキルを持つが、説明が難しいため、信頼できない。
解釈可能性(interpretability)は、下層の現象を物理的に理解することを目的としている気候社会において特に重要である。
さらに、この予測が、社会に高い影響を与える極端な気象事象に関係する場合は、さらにそうである。
本稿では,より複雑なMLモデルの階層構造を用いて,フランス上空の極端熱波の確率論的予測を行う。
より正確には、グローバルガウス近似(GA)から深部畳み込みニューラルネットワーク(CNN)まで、単純なIntrinsically Interpretable Neural Network(IINN)の中間ステップと、Scattering Transform(ScatNet)を用いたモデルを用いています。
以上の結果から,CNNの精度は向上するが,そのブラックボックスの性質は,最先端の説明可能な人工知能(XAI)ツールを用いても,解釈可能性を大幅に制限することがわかった。
対照的に、ScatNetはCNNと同じようなパフォーマンスを実現し、より透明性を提供し、予測を駆動するデータの重要スケールとパターンを特定します。
この研究は、気候科学のためのMLモデルにおける解釈可能性の可能性を強調し、より単純なモデルがより複雑なモデルの性能に匹敵することを示した。
この解釈可能性の獲得は、モデル予測の信頼の構築と新たな科学的知見の発見に不可欠であり、最終的には極度の気象事象の理解と管理を促進する。
関連論文リスト
- Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
本稿では、より説明可能なアクティベーションヒートマップを取得し、同時にモデル性能を向上させるフレームワークを提案する。
具体的には、モデル学習において、トレーニングサンプルを適応的に重み付けするために、新しいメトリクス、すなわち説明整合性を導入する。
そこで,本フレームワークは,これらのトレーニングサンプルに深い注意を払ってモデル学習を促進する。
論文 参考訳(メタデータ) (2024-08-08T17:20:08Z) - Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging [1.747339718564314]
本研究は,気象予測に対する物理学的アプローチとAI的アプローチの相対的強みと弱みについて述べる。
GEM予測された大規模状態変数をGraphCast予測に対してスペクトル的に評価するハイブリッドNWP-AIシステムを提案する。
その結果,このハイブリッド手法は,GEMモデルの予測能力を高めるために,GraphCastの強みを活用できることが示唆された。
論文 参考訳(メタデータ) (2024-07-08T16:39:25Z) - Interpretable Machine Learning for Weather and Climate Prediction: A Survey [24.028385794099435]
気象予測に適用された現在の解釈可能な機械学習手法について概説する。
ツリーアンサンブルや説明可能なニューラルネットワークといったアーキテクチャを使って、スクラッチから本質的に解釈可能なモデルを設計する。
物理原理に沿ったより深い機械的解釈を達成するための研究課題について論じる。
論文 参考訳(メタデータ) (2024-03-24T14:23:35Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks [0.0]
我々は,新しいニューラルネットワークアーキテクチャを用いて,マクロ経済密度予測のための最大推定値(MLE)を再活性化する。
ヘミスフィアニューラルネットワーク(HNN)は、可能時の主指標に基づく積極的なボラティリティ予測と、必要時の過去の予測誤差の大きさに基づく反応性ボラティリティ予測を提供する。
論文 参考訳(メタデータ) (2023-11-27T21:37:50Z) - Greybox XAI: a Neural-Symbolic learning framework to produce
interpretable predictions for image classification [6.940242990198]
Greybox XAIは、シンボリック知識ベース(KB)を使うことで、DNNと透明モデルを構成するフレームワークである。
我々は、XAIの普遍的基準が欠如している問題に、説明が何であるかを形式化することで対処する。
この新しいアーキテクチャがどのように正確で、いくつかのデータセットで説明可能であるかを示す。
論文 参考訳(メタデータ) (2022-09-26T08:55:31Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
本研究では,都市環境における歩行者位置予測を目的とした,簡易かつ効果的な歩行者軌道予測モデルを提案する。
我々のモデルは、複数のアテンションブロックとトランスフォーマーを反復的に実行できるニューラルネットワークアーキテクチャである。
ソーシャルマスク, 動的モデル, ソーシャルプーリング層, 複雑なグラフのような構造を明示的に導入することなく, SoTAモデルと同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T07:49:48Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
本稿では,モデルアーキテクチャの解釈可能性と信頼性,外挿を行うためのツールボックスを提案する。
与えられたテストポイントでの予測に対する入力データの影響、モデル予測の不確実性の推定、およびモデル予測の不可知スコアを提供する。
我々の研究は、物理学やより一般的には科学に適用されたMLにおける解釈可能性と信頼性の方法の体系的利用への道を開く。
論文 参考訳(メタデータ) (2021-08-04T16:32:59Z) - Adaptive wavelet distillation from neural networks through
interpretations [10.923598153317567]
解釈可能性は科学や医学など多くの分野において重要であり、モデルは慎重に検証されなければならない。
本稿では,適応型ウェーブレット蒸留法(AWD)を提案する。
本稿では、宇宙パラメータ推論と分子パートナー予測の2つの現実的な設定において、AWDが課題にどう対処するかを示す。
論文 参考訳(メタデータ) (2021-07-19T20:40:35Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
本稿では,新しいタイプの解釈可能な機械学習手法を提案する。
量子シフトを用いた分類モデルでは、特徴空間の予測クラスへの分割を理解するのに役立ちます。
基本的に、実際のデータポイント(または特定の関心点)を使用し、特定の特徴をわずかに引き上げたり減少させたりした後の予測の変化を観察する。
論文 参考訳(メタデータ) (2020-09-11T16:35:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。