論文の概要: Inferring Kernel $ε$-Machines: Discovering Structure in Complex Systems
- arxiv url: http://arxiv.org/abs/2410.01076v1
- Date: Tue, 1 Oct 2024 21:14:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 23:20:41.507132
- Title: Inferring Kernel $ε$-Machines: Discovering Structure in Complex Systems
- Title(参考訳): カーネル$ε$-Machinesの推論:複雑系の構造を発見する
- Authors: Alexandra M. Jurgens, Nicolas Brodu,
- Abstract要約: 本稿では,カーネル因果状態推定を縮小次元空間における座標の集合として符号化する因果拡散成分を提案する。
それぞれのコンポーネントがデータから予測機能を抽出し,そのアプリケーションを4つの例で示す。
- 参考スコア(独自算出の注目度): 49.1574468325115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previously, we showed that computational mechanic's causal states -- predictively-equivalent trajectory classes for a stochastic dynamical system -- can be cast into a reproducing kernel Hilbert space. The result is a widely-applicable method that infers causal structure directly from very different kinds of observations and systems. Here, we expand this method to explicitly introduce the causal diffusion components it produces. These encode the kernel causal-state estimates as a set of coordinates in a reduced dimension space. We show how each component extracts predictive features from data and demonstrate their application on four examples: first, a simple pendulum -- an exactly solvable system; second, a molecular-dynamic trajectory of $n$-butane -- a high-dimensional system with a well-studied energy landscape; third, the monthly sunspot sequence -- the longest-running available time series of direct observations; and fourth, multi-year observations of an active crop field -- a set of heterogeneous observations of the same ecosystem taken for over a decade. In this way, we demonstrate that the empirical kernel causal-states algorithm robustly discovers predictive structures for systems with widely varying dimensionality and stochasticity.
- Abstract(参考訳): 計算力学の因果状態(確率力学系に対する予測的に等価な軌道クラス)は、再現されたカーネルヒルベルト空間にキャストできることを示した。
その結果は、非常に異なる種類の観測やシステムから直接因果構造を推定する、広く適用可能な方法である。
ここで,本手法を拡張して,生成する因果拡散成分を明示的に導入する。
これらは、縮小次元空間における座標の集合としてカーネル因果状態推定を符号化する。
それぞれのコンポーネントがデータから予測的特徴を抽出し、その応用を4つの例で示す: 第一に、単純な振り子 -- 正確に解けるシステム、第二に、よく研究されたエネルギー景観を持つ高次元システムである$n$-butane -- の分子力学的軌道、第三に、月日スポットシーケンス -- 最長で利用可能な直接観測の時系列、第4に、アクティブな作物畑の多年にわたる観測 -- が10年以上にわたって行われた同じ生態系の不均一な観測である。
このようにして、経験的カーネル因果状態アルゴリズムは、幅広い次元と確率性を持つ系の予測構造を頑健に発見することを示した。
関連論文リスト
- Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Random Feature Models for Learning Interacting Dynamical Systems [2.563639452716634]
エージェントの経路のノイズ観測から直接相互作用力のデータに基づく近似を構築することの問題点を考察する。
学習された相互作用カーネルは、長い時間間隔でエージェントの振る舞いを予測するために使用される。
さらに,カーネル評価コストを削減し,マルチエージェントシステムのシミュレーションコストを大幅に削減する。
論文 参考訳(メタデータ) (2022-12-11T20:09:36Z) - Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency [111.83670279016599]
部分観察決定過程(POMDP)の無限観測および状態空間を用いた強化学習について検討した。
線形構造をもつPOMDPのクラスに対する部分可観測性と関数近似の最初の試みを行う。
論文 参考訳(メタデータ) (2022-04-20T21:15:38Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
量子系の外部自由度への不可避結合は、散逸(非単体)ダイナミクスをもたらす。
本稿では,グリーン関数の(散逸的な)格子計算に基づいて,これらのシステムに対処する手法を提案する。
本手法のパワーを,複雑性を増大させる駆動散逸型ボゾン鎖のいくつかの例で説明する。
論文 参考訳(メタデータ) (2022-02-15T19:00:09Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
我々は、周期性の存在下での強い相互作用を持つシステムのシミュレーションのために、神経量子状態の族を紹介する。
一次元系では、基底状態エネルギーと粒子の放射分布関数を非常に正確に推定する。
二つの次元において基底状態エネルギーの優れた推定値を得るが、これはより伝統的な手法から得られる結果に匹敵する。
論文 参考訳(メタデータ) (2021-12-22T15:27:30Z) - Discovering Causal Structure with Reproducing-Kernel Hilbert Space
$\epsilon$-Machines [0.0]
本稿では,システム動作の観察から因果構造を直接推定する手法を提案する。
外部および測定ノイズレベルが異なる場合の因果構造を頑健に推定する。
論文 参考訳(メタデータ) (2020-11-23T23:41:16Z) - Learning interaction kernels in mean-field equations of 1st-order
systems of interacting particles [1.776746672434207]
相互作用粒子の1次系に対する平均場方程式の相互作用核を学習するための非パラメトリックアルゴリズムを提案する。
少なくとも正則化と二乗することにより、アルゴリズムはデータ適応仮説空間上でカーネルを効率的に学習する。
論文 参考訳(メタデータ) (2020-10-29T15:37:17Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Learning interaction kernels in stochastic systems of interacting
particles from multiple trajectories [13.3638879601361]
相互作用する粒子やエージェントのシステムと、相互作用カーネルによって決定されるダイナミクスを考察する。
正規化極大推定器に基づく逆問題に対する非パラメトリック推論手法を提案する。
相関条件により,この問題の条件数を制御し,推定器の整合性を証明することができることを示す。
論文 参考訳(メタデータ) (2020-07-30T01:28:06Z) - The entanglement membrane in chaotic many-body systems [0.0]
ある種の解析的抽出可能な量子カオスシステムでは、時間外相関関数の計算、クエンチ後の絡み合いエントロピー、その他の関連する動的可観測物は、時空における絡み合い膜の効果的な理論に還元される。
ここでは、ランダムなユニタリ平均を含まない、より現実的なモデルでこの膜を理解する方法を示す。
論文 参考訳(メタデータ) (2019-12-27T19:01:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。