論文の概要: Information-Theoretical Principled Trade-off between Jailbreakability and Stealthiness on Vision Language Models
- arxiv url: http://arxiv.org/abs/2410.01438v1
- Date: Wed, 2 Oct 2024 11:40:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 21:09:23.632834
- Title: Information-Theoretical Principled Trade-off between Jailbreakability and Stealthiness on Vision Language Models
- Title(参考訳): 視覚言語モデルにおけるジェイルブレーカビリティとステルスネス間の情報理論原則トレードオフ
- Authors: Ching-Chia Kao, Chia-Mu Yu, Chun-Shien Lu, Chu-Song Chen,
- Abstract要約: 本稿では,視覚言語モデル(VLM)におけるジェイルブレイク可能性とステルスネスのトレードオフについて検討する。
本研究では,非スティルシージェイルブレイク攻撃を検知し,モデルロバスト性を高める新しいアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 23.347349690954452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, Vision-Language Models (VLMs) have demonstrated significant advancements in artificial intelligence, transforming tasks across various domains. Despite their capabilities, these models are susceptible to jailbreak attacks, which can compromise their safety and reliability. This paper explores the trade-off between jailbreakability and stealthiness in VLMs, presenting a novel algorithm to detect non-stealthy jailbreak attacks and enhance model robustness. We introduce a stealthiness-aware jailbreak attack using diffusion models, highlighting the challenge of detecting AI-generated content. Our approach leverages Fano's inequality to elucidate the relationship between attack success rates and stealthiness scores, providing an explainable framework for evaluating these threats. Our contributions aim to fortify AI systems against sophisticated attacks, ensuring their outputs remain aligned with ethical standards and user expectations.
- Abstract(参考訳): 近年、ビジョン・ランゲージ・モデル(VLM)は人工知能の大幅な進歩を示し、様々な領域でタスクを変換している。
それらの能力にもかかわらず、これらのモデルはジェイルブレイク攻撃の影響を受けやすいため、安全性と信頼性を損なう可能性がある。
本稿では,VLMにおける脱獄性と盗難のトレードオフを考察し,非盗難脱獄攻撃を検知し,モデルロバスト性を高める新しいアルゴリズムを提案する。
拡散モデルを用いたステルスネスを意識したジェイルブレイク攻撃を導入し,AI生成コンテンツ検出の課題を強調した。
我々のアプローチは、ファノの不平等を利用して、攻撃の成功率とステルスネススコアの関係を解明し、これらの脅威を評価するための説明可能なフレームワークを提供する。
当社のコントリビューションは、高度な攻撃に対してAIシステムを強化し、そのアウトプットが倫理基準とユーザの期待に沿うことを保証することを目的としています。
関連論文リスト
- Chain of Attack: On the Robustness of Vision-Language Models Against Transfer-Based Adversarial Attacks [34.40254709148148]
事前学習された視覚言語モデル(VLM)は、画像および自然言語理解において顕著な性能を示した。
彼らの潜在的な安全性と堅牢性の問題は、敵がシステムを回避し、悪意のある攻撃を通じて有害なコンテンツを生成することを懸念する。
本稿では,マルチモーダルなセマンティック・アップデートに基づいて,敵対的事例の生成を反復的に促進するアタック・チェーン(CoA)を提案する。
論文 参考訳(メタデータ) (2024-11-24T05:28:07Z) - Jailbreak Attacks and Defenses against Multimodal Generative Models: A Survey [50.031628043029244]
マルチモーダル生成モデルは、ビルトインの安全機構をバイパスし、潜在的に有害なコンテンツの生成を誘導できる、ジェイルブレイク攻撃の影響を受けやすい。
本調査は,マルチモーダル生成モデルにおけるジェイルブレイクと防御についてレビューする。
論文 参考訳(メタデータ) (2024-11-14T07:51:51Z) - HarmLevelBench: Evaluating Harm-Level Compliance and the Impact of Quantization on Model Alignment [1.8843687952462742]
本稿では,現在の脱獄技術とLLM脆弱性評価のギャップに対処することを目的としている。
私たちの貢献は、複数の害レベルにわたるモデル出力の有害性を評価するために設計された、新しいデータセットの作成を含む。
Vicuna 13B v1.5モデルをターゲットとした、最先端の脱獄攻撃の包括的なベンチマークを提供する。
論文 参考訳(メタデータ) (2024-11-11T10:02:49Z) - Jailbreaking and Mitigation of Vulnerabilities in Large Language Models [4.564507064383306]
大規模言語モデル(LLM)は、自然言語の理解と生成を前進させることで、人工知能を変革した。
これらの進歩にもかかわらず、LSMは、特に注射と脱獄攻撃を急ぐために、かなりの脆弱性を示してきた。
このレビューでは、これらの脆弱性についての研究状況を分析し、利用可能な防衛戦略を提示する。
論文 参考訳(メタデータ) (2024-10-20T00:00:56Z) - BlackDAN: A Black-Box Multi-Objective Approach for Effective and Contextual Jailbreaking of Large Language Models [47.576957746503666]
BlackDANは、多目的最適化を備えた革新的なブラックボックス攻撃フレームワークである。
ジェイルブレイクを効果的に促進する高品質なプロンプトを生成する。
コンテキスト関連性を維持し、検出可能性を最小限にする。
論文 参考訳(メタデータ) (2024-10-13T11:15:38Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Defending Large Language Models against Jailbreak Attacks via Semantic
Smoothing [107.97160023681184]
適応型大規模言語モデル(LLM)は、ジェイルブレイク攻撃に対して脆弱である。
提案するSEMANTICSMOOTHは,与えられた入力プロンプトのセマンティック変換されたコピーの予測を集約するスムージングベースのディフェンスである。
論文 参考訳(メタデータ) (2024-02-25T20:36:03Z) - Revealing Vulnerabilities in Stable Diffusion via Targeted Attacks [41.531913152661296]
本稿では,安定拡散に対する標的対向攻撃の問題を定式化し,対向的プロンプトを生成するための枠組みを提案する。
具体的には、安定した拡散を誘導し、特定の画像を生成するための信頼性の高い逆プロンプトを構築するために、勾配に基づく埋め込み最適化を設計する。
逆方向のプロンプトを成功させた後、モデルの脆弱性を引き起こすメカニズムを明らかにする。
論文 参考訳(メタデータ) (2024-01-16T12:15:39Z) - Jailbroken: How Does LLM Safety Training Fail? [92.8748773632051]
ChatGPTの初期リリースに対する"jailbreak"攻撃は、望ましくない振る舞いを引き起こす。
このような攻撃がなぜ成功し、どのように発生できるかを考察する。
障害モードを利用した新たな攻撃は、安全でない要求の収集において、すべてのプロンプトで成功します。
論文 参考訳(メタデータ) (2023-07-05T17:58:10Z) - Visual Adversarial Examples Jailbreak Aligned Large Language Models [66.53468356460365]
視覚入力の連続的かつ高次元的な性質は、敵対的攻撃に対する弱いリンクであることを示す。
我々は、視力統合されたLLMの安全ガードレールを回避するために、視覚的敵の例を利用する。
本研究は,マルチモダリティの追求に伴う敵のエスカレーションリスクを浮き彫りにする。
論文 参考訳(メタデータ) (2023-06-22T22:13:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。