Mimicking Human Intuition: Cognitive Belief-Driven Reinforcement Learning
- URL: http://arxiv.org/abs/2410.01739v3
- Date: Thu, 12 Jun 2025 15:01:47 GMT
- Title: Mimicking Human Intuition: Cognitive Belief-Driven Reinforcement Learning
- Authors: Xingrui Gu, Guanren Qiao, Chuyi Jiang,
- Abstract summary: We propose an innovative framework inspired by cognitive principles: Cognitive Belief-Driven Reinforcement Learning (CBD-RL)<n>CBD-RL transforms conventional trial-and-error learning into a more structured and guided learning paradigm, simulating the human reasoning process.<n>The concrete implementations of this framework, CBDQ, CBDPPO, and CBDSAC, demonstrate superior performance in discrete and continuous action spaces.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional reinforcement learning (RL) methods mainly rely on trial-and-error exploration, often lacking mechanisms to guide agents toward more informative decision-making and struggling to leverage past experiences, resulting in low sample efficiency. To overcome this issue, we propose an innovative framework inspired by cognitive principles: Cognitive Belief-Driven Reinforcement Learning (CBD-RL). By incorporating cognitive heuristics, CBD-RL transforms conventional trial-and-error learning into a more structured and guided learning paradigm, simulating the human reasoning process. This framework's core is a belief system that optimizes action probabilities by integrating feedback with prior experience, thus enhancing decision making under uncertainty. It also organizes state-action pairs into meaningful categories, promoting generalization and improving sample efficiency. The concrete implementations of this framework, CBDQ, CBDPPO, and CBDSAC, demonstrate superior performance in discrete and continuous action spaces in diverse environments such as Atari and MuJoCo. By bridging cognitive science and reinforcement learning, this research opens a new avenue for developing RL systems that are more interpretable, efficient, and cognitively inspired.
Related papers
- Unveiling the Learning Mind of Language Models: A Cognitive Framework and Empirical Study [50.065744358362345]
Large language models (LLMs) have shown impressive capabilities across tasks such as mathematics, coding, and reasoning.<n>Yet their learning ability, which is crucial for adapting to dynamic environments and acquiring new knowledge, remains underexplored.
arXiv Detail & Related papers (2025-06-16T13:24:50Z) - Dynamic Programming Techniques for Enhancing Cognitive Representation in Knowledge Tracing [125.75923987618977]
We propose the Cognitive Representation Dynamic Programming based Knowledge Tracing (CRDP-KT) model.<n>It is a dynamic programming algorithm to optimize cognitive representations based on the difficulty of the questions and the performance intervals between them.<n>It provides more accurate and systematic input features for subsequent model training, thereby minimizing distortion in the simulation of cognitive states.
arXiv Detail & Related papers (2025-06-03T14:44:48Z) - Two Experts Are All You Need for Steering Thinking: Reinforcing Cognitive Effort in MoE Reasoning Models Without Additional Training [86.70255651945602]
We introduce a novel inference-time steering methodology called Reinforcing Cognitive Experts (RICE)<n>RICE aims to improve reasoning performance without additional training or complexs.<n> Empirical evaluations with leading MoE-based LRMs demonstrate noticeable and consistent improvements in reasoning accuracy, cognitive efficiency, and cross-domain generalization.
arXiv Detail & Related papers (2025-05-20T17:59:16Z) - A Framework for Robust Cognitive Evaluation of LLMs [13.822169295436177]
Emergent cognitive abilities in large language models (LLMs) have been widely observed, but their nature and underlying mechanisms remain poorly understood.<n>We develop CognitivEval, a framework for systematically evaluating the artificial cognitive capabilities of LLMs.
arXiv Detail & Related papers (2025-04-03T17:35:54Z) - Does "Reasoning" with Large Language Models Improve Recognizing, Generating, and Reframing Unhelpful Thoughts? [22.202600416432386]
Cognitive Reframing helps individuals reinterpret negative experiences by finding positive meaning.<n>Recent advances in Large Language Models (LLMs) have demonstrated improved performance through reasoning-based strategies.<n>This inspires a promising direction of leveraging the reasoning capabilities of LLMs to improve CBT and mental reframing.
arXiv Detail & Related papers (2025-03-31T19:19:34Z) - How Metacognitive Architectures Remember Their Own Thoughts: A Systematic Review [16.35521789216079]
We review how Computational Metacognitive Architectures (CMAs) model, store, remember and process their metacognitive experiences.
We consider different aspects - ranging from the underlying psychological theories to the content and structure of collected data, to the algorithms used and evaluation results.
arXiv Detail & Related papers (2025-02-28T08:48:41Z) - Unveiling the Role of Expert Guidance: A Comparative Analysis of User-centered Imitation Learning and Traditional Reinforcement Learning [0.0]
This study explores the performance, robustness, and limitations of imitation learning compared to traditional reinforcement learning methods.
The insights gained from this study contribute to the advancement of human-centered artificial intelligence.
arXiv Detail & Related papers (2024-10-28T18:07:44Z) - Predicting and Understanding Human Action Decisions: Insights from Large Language Models and Cognitive Instance-Based Learning [0.0]
Large Language Models (LLMs) have demonstrated their capabilities across various tasks.
This paper exploits the reasoning and generative capabilities of the LLMs to predict human behavior in two sequential decision-making tasks.
We compare the performance of LLMs with a cognitive instance-based learning model, which imitates human experiential decision-making.
arXiv Detail & Related papers (2024-07-12T14:13:06Z) - Balancing Rigor and Utility: Mitigating Cognitive Biases in Large Language Models for Multiple-Choice Questions [0.46873264197900916]
This paper examines the role of cognitive biases in the decision-making processes of large language models (LLMs)
We show that certain cognitive biases when properly balanced, can enhance decision-making efficiency through rational deviations and shortcuts.
arXiv Detail & Related papers (2024-06-16T16:25:22Z) - Brain-Inspired Continual Learning-Robust Feature Distillation and Re-Consolidation for Class Incremental Learning [0.0]
We introduce a novel framework comprising two core concepts: feature distillation and re-consolidation.
Our framework, named Robust Rehearsal, addresses the challenge of catastrophic forgetting inherent in continual learning systems.
Experiments conducted on CIFAR10, CIFAR100, and real-world helicopter attitude datasets showcase the superior performance of CL models trained with Robust Rehearsal.
arXiv Detail & Related papers (2024-04-22T21:30:11Z) - A Unified and General Framework for Continual Learning [58.72671755989431]
Continual Learning (CL) focuses on learning from dynamic and changing data distributions while retaining previously acquired knowledge.
Various methods have been developed to address the challenge of catastrophic forgetting, including regularization-based, Bayesian-based, and memory-replay-based techniques.
This research aims to bridge this gap by introducing a comprehensive and overarching framework that encompasses and reconciles these existing methodologies.
arXiv Detail & Related papers (2024-03-20T02:21:44Z) - Benchmarking Continual Learning from Cognitive Perspectives [14.867136605254975]
Continual learning addresses the problem of continuously acquiring and transferring knowledge without catastrophic forgetting of old concepts.
There is a mismatch between cognitive properties and evaluation methods of continual learning models.
We propose to integrate model cognitive capacities and evaluation metrics into a unified evaluation paradigm.
arXiv Detail & Related papers (2023-12-06T06:27:27Z) - Explaining by Imitating: Understanding Decisions by Interpretable Policy
Learning [72.80902932543474]
Understanding human behavior from observed data is critical for transparency and accountability in decision-making.
Consider real-world settings such as healthcare, in which modeling a decision-maker's policy is challenging.
We propose a data-driven representation of decision-making behavior that inheres transparency by design, accommodates partial observability, and operates completely offline.
arXiv Detail & Related papers (2023-10-28T13:06:14Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions.
Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.
arXiv Detail & Related papers (2023-10-24T19:46:04Z) - A Study of Situational Reasoning for Traffic Understanding [63.45021731775964]
We devise three novel text-based tasks for situational reasoning in the traffic domain.
We adopt four knowledge-enhanced methods that have shown generalization capability across language reasoning tasks in prior work.
We provide in-depth analyses of model performance on data partitions and examine model predictions categorically.
arXiv Detail & Related papers (2023-06-05T01:01:12Z) - OlaGPT: Empowering LLMs With Human-like Problem-Solving Abilities [19.83434949066066]
This paper introduces a novel intelligent framework, referred to as OlaGPT.
OlaGPT carefully studied a cognitive architecture framework, and propose to simulate certain aspects of human cognition.
The framework involves approximating different cognitive modules, including attention, memory, reasoning, learning, and corresponding scheduling and decision-making mechanisms.
arXiv Detail & Related papers (2023-05-23T09:36:51Z) - Interpreting Neural Policies with Disentangled Tree Representations [58.769048492254555]
We study interpretability of compact neural policies through the lens of disentangled representation.
We leverage decision trees to obtain factors of variation for disentanglement in robot learning.
We introduce interpretability metrics that measure disentanglement of learned neural dynamics.
arXiv Detail & Related papers (2022-10-13T01:10:41Z) - Modeling Human Behavior Part II -- Cognitive approaches and Uncertainty [0.0]
In Part I, we discussed methods which generate a model of behavior from exploration of the system and feedback based on the exhibited behavior.
In this work, we will continue the discussion from the perspective of methods which focus on the assumed cognitive abilities, limitations, and biases demonstrated in human reasoning.
arXiv Detail & Related papers (2022-05-13T07:29:15Z) - Autonomous Reinforcement Learning: Formalism and Benchmarking [106.25788536376007]
Real-world embodied learning, such as that performed by humans and animals, is situated in a continual, non-episodic world.
Common benchmark tasks in RL are episodic, with the environment resetting between trials to provide the agent with multiple attempts.
This discrepancy presents a major challenge when attempting to take RL algorithms developed for episodic simulated environments and run them on real-world platforms.
arXiv Detail & Related papers (2021-12-17T16:28:06Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z) - IQ-Learn: Inverse soft-Q Learning for Imitation [95.06031307730245]
imitation learning from a small amount of expert data can be challenging in high-dimensional environments with complex dynamics.
Behavioral cloning is a simple method that is widely used due to its simplicity of implementation and stable convergence.
We introduce a method for dynamics-aware IL which avoids adversarial training by learning a single Q-function.
arXiv Detail & Related papers (2021-06-23T03:43:10Z) - Reinforcement Learning through Active Inference [62.997667081978825]
We show how ideas from active inference can augment traditional reinforcement learning approaches.
We develop and implement a novel objective for decision making, which we term the free energy of the expected future.
We demonstrate that the resulting algorithm successfully exploration and exploitation, simultaneously achieving robust performance on several challenging RL benchmarks with sparse, well-shaped, and no rewards.
arXiv Detail & Related papers (2020-02-28T10:28:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.