SegHeD: Segmentation of Heterogeneous Data for Multiple Sclerosis Lesions with Anatomical Constraints
- URL: http://arxiv.org/abs/2410.01766v1
- Date: Wed, 2 Oct 2024 17:21:43 GMT
- Title: SegHeD: Segmentation of Heterogeneous Data for Multiple Sclerosis Lesions with Anatomical Constraints
- Authors: Berke Doga Basaran, Xinru Zhang, Paul M. Matthews, Wenjia Bai,
- Abstract summary: Machine learning models have demonstrated a great potential for automated MS lesion segmentation.
SegHeD is a novel multi-dataset multi-task segmentation model that can incorporate heterogeneous data as input.
SegHeD is assessed on five MS datasets and achieves a high performance in all, new, and vanishing-lesion segmentation.
- Score: 1.498084483844508
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Assessment of lesions and their longitudinal progression from brain magnetic resonance (MR) images plays a crucial role in diagnosing and monitoring multiple sclerosis (MS). Machine learning models have demonstrated a great potential for automated MS lesion segmentation. Training such models typically requires large-scale high-quality datasets that are consistently annotated. However, MS imaging datasets are often small, segregated across multiple sites, with different formats (cross-sectional or longitudinal), and diverse annotation styles. This poses a significant challenge to train a unified MS lesion segmentation model. To tackle this challenge, we present SegHeD, a novel multi-dataset multi-task segmentation model that can incorporate heterogeneous data as input and perform all-lesion, new-lesion, as well as vanishing-lesion segmentation. Furthermore, we account for domain knowledge about MS lesions, incorporating longitudinal, spatial, and volumetric constraints into the segmentation model. SegHeD is assessed on five MS datasets and achieves a high performance in all, new, and vanishing-lesion segmentation, outperforming several state-of-the-art methods in this field.
Related papers
- SegHeD+: Segmentation of Heterogeneous Data for Multiple Sclerosis Lesions with Anatomical Constraints and Lesion-aware Augmentation [1.6365496769445946]
We introduce SegHeD+, a novel segmentation model that can handle multiple datasets and tasks.
We integrate domain knowledge about MS lesions by incorporating longitudinal, anatomical, and volumetric constraints into the segmentation model.
SegHeD+ is evaluated on five MS datasets and demonstrates superior performance in segmenting all, new, and vanishing lesions.
arXiv Detail & Related papers (2024-12-14T19:44:25Z) - Enhanced MRI Representation via Cross-series Masking [48.09478307927716]
Cross-Series Masking (CSM) Strategy for effectively learning MRI representation in a self-supervised manner.
Method achieves state-of-the-art performance on both public and in-house datasets.
arXiv Detail & Related papers (2024-12-10T10:32:09Z) - MRGen: Diffusion-based Controllable Data Engine for MRI Segmentation towards Unannotated Modalities [59.61465292965639]
This paper investigates a new paradigm for leveraging generative models in medical applications.
We propose a diffusion-based data engine, termed MRGen, which enables generation conditioned on text prompts and masks.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - Toward Generalizable Multiple Sclerosis Lesion Segmentation Models [0.0]
This study aims to develop models that generalize across diverse evaluation datasets.
We used all high-quality publicly-available MS lesion segmentation datasets on which we systematically trained a state-of-the-art UNet++ architecture.
arXiv Detail & Related papers (2024-10-25T15:21:54Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
We introduce Mask-Enhanced SAM (M-SAM), an innovative architecture tailored for 3D tumor lesion segmentation.
We propose a novel Mask-Enhanced Adapter (MEA) within M-SAM that enriches the semantic information of medical images with positional data from coarse segmentation masks.
Our M-SAM achieves high segmentation accuracy and also exhibits robust generalization.
arXiv Detail & Related papers (2024-03-09T13:37:02Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Analysing the effectiveness of a generative model for semi-supervised
medical image segmentation [23.898954721893855]
State-of-the-art in automated segmentation remains supervised learning, employing discriminative models such as U-Net.
Semi-supervised learning (SSL) attempts to leverage the abundance of unlabelled data to obtain more robust and reliable models.
Deep generative models such as the SemanticGAN are truly viable alternatives to tackle challenging medical image segmentation problems.
arXiv Detail & Related papers (2022-11-03T15:19:59Z) - AMOS: A Large-Scale Abdominal Multi-Organ Benchmark for Versatile
Medical Image Segmentation [32.938687630678096]
AMOS is a large-scale, diverse, clinical dataset for abdominal organ segmentation.
It provides challenging examples and test-bed for studying robust segmentation algorithms under diverse targets and scenarios.
We benchmark several state-of-the-art medical segmentation models to evaluate the status of the existing methods on this new challenging dataset.
arXiv Detail & Related papers (2022-06-16T09:27:56Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.