SegHeD+: Segmentation of Heterogeneous Data for Multiple Sclerosis Lesions with Anatomical Constraints and Lesion-aware Augmentation
- URL: http://arxiv.org/abs/2412.10946v1
- Date: Sat, 14 Dec 2024 19:44:25 GMT
- Title: SegHeD+: Segmentation of Heterogeneous Data for Multiple Sclerosis Lesions with Anatomical Constraints and Lesion-aware Augmentation
- Authors: Berke Doga Basaran, Paul M. Matthews, Wenjia Bai,
- Abstract summary: We introduce SegHeD+, a novel segmentation model that can handle multiple datasets and tasks.
We integrate domain knowledge about MS lesions by incorporating longitudinal, anatomical, and volumetric constraints into the segmentation model.
SegHeD+ is evaluated on five MS datasets and demonstrates superior performance in segmenting all, new, and vanishing lesions.
- Score: 1.6365496769445946
- License:
- Abstract: Assessing lesions and tracking their progression over time in brain magnetic resonance (MR) images is essential for diagnosing and monitoring multiple sclerosis (MS). Machine learning models have shown promise in automating the segmentation of MS lesions. However, training these models typically requires large, well-annotated datasets. Unfortunately, MS imaging datasets are often limited in size, spread across multiple hospital sites, and exhibit different formats (such as cross-sectional or longitudinal) and annotation styles. This data diversity presents a significant obstacle to developing a unified model for MS lesion segmentation. To address this issue, we introduce SegHeD+, a novel segmentation model that can handle multiple datasets and tasks, accommodating heterogeneous input data and performing segmentation for all lesions, new lesions, and vanishing lesions. We integrate domain knowledge about MS lesions by incorporating longitudinal, anatomical, and volumetric constraints into the segmentation model. Additionally, we perform lesion-level data augmentation to enlarge the training set and further improve segmentation performance. SegHeD+ is evaluated on five MS datasets and demonstrates superior performance in segmenting all, new, and vanishing lesions, surpassing several state-of-the-art methods in the field.
Related papers
- Stroke Lesion Segmentation using Multi-Stage Cross-Scale Attention [1.9973808639817021]
This work introduces the Multi-Stage Cross-Scale Attention (MSCSA) mechanism to improve the mapping between brain structural features and lesions of varying sizes.
Using the Anatomical Tracings of Lesions After Stroke (ATLAS) v2.0 dataset, MSCSA outperforms all baseline methods in both Dice and F1 scores on a subset focusing on small lesions.
arXiv Detail & Related papers (2025-01-26T06:57:31Z) - Enhanced MRI Representation via Cross-series Masking [48.09478307927716]
Cross-Series Masking (CSM) Strategy for effectively learning MRI representation in a self-supervised manner.
Method achieves state-of-the-art performance on both public and in-house datasets.
arXiv Detail & Related papers (2024-12-10T10:32:09Z) - MRGen: Diffusion-based Controllable Data Engine for MRI Segmentation towards Unannotated Modalities [59.61465292965639]
This paper investigates a new paradigm for leveraging generative models in medical applications.
We propose a diffusion-based data engine, termed MRGen, which enables generation conditioned on text prompts and masks.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - Toward Generalizable Multiple Sclerosis Lesion Segmentation Models [0.0]
This study aims to develop models that generalize across diverse evaluation datasets.
We used all high-quality publicly-available MS lesion segmentation datasets on which we systematically trained a state-of-the-art UNet++ architecture.
arXiv Detail & Related papers (2024-10-25T15:21:54Z) - SegHeD: Segmentation of Heterogeneous Data for Multiple Sclerosis Lesions with Anatomical Constraints [1.498084483844508]
Machine learning models have demonstrated a great potential for automated MS lesion segmentation.
SegHeD is a novel multi-dataset multi-task segmentation model that can incorporate heterogeneous data as input.
SegHeD is assessed on five MS datasets and achieves a high performance in all, new, and vanishing-lesion segmentation.
arXiv Detail & Related papers (2024-10-02T17:21:43Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
We introduce Mask-Enhanced SAM (M-SAM), an innovative architecture tailored for 3D tumor lesion segmentation.
We propose a novel Mask-Enhanced Adapter (MEA) within M-SAM that enriches the semantic information of medical images with positional data from coarse segmentation masks.
Our M-SAM achieves high segmentation accuracy and also exhibits robust generalization.
arXiv Detail & Related papers (2024-03-09T13:37:02Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Domain Generalization with Adversarial Intensity Attack for Medical
Image Segmentation [27.49427483473792]
In real-world scenarios, it is common for models to encounter data from new and different domains to which they were not exposed to during training.
domain generalization (DG) is a promising direction as it enables models to handle data from previously unseen domains.
We introduce a novel DG method called Adversarial Intensity Attack (AdverIN), which leverages adversarial training to generate training data with an infinite number of styles.
arXiv Detail & Related papers (2023-04-05T19:40:51Z) - External Attention Assisted Multi-Phase Splenic Vascular Injury
Segmentation with Limited Data [72.99534552950138]
The spleen is one of the most commonly injured solid organs in blunt abdominal trauma.
accurate segmentation of splenic vascular injury is challenging for the following reasons.
arXiv Detail & Related papers (2022-01-04T02:35:56Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.