論文の概要: Learning To Solve Differential Equation Constrained Optimization Problems
- arxiv url: http://arxiv.org/abs/2410.01786v1
- Date: Wed, 2 Oct 2024 17:42:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 15:14:33.733804
- Title: Learning To Solve Differential Equation Constrained Optimization Problems
- Title(参考訳): 微分方程式制約付き最適化問題の解法
- Authors: Vincenzo Di Vito, Mostafa Mohammadian, Kyri Baker, Ferdinando Fioretto,
- Abstract要約: 本稿では、プロキシ最適化とニューラル微分方程式の手法を組み合わせたDECの学習に基づく最適化手法を提案する。
結果は、システムの動的方程式を明示的にモデル化しない他の方法の25倍の精度で生成される。
- 参考スコア(独自算出の注目度): 44.27620230177312
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differential equations (DE) constrained optimization plays a critical role in numerous scientific and engineering fields, including energy systems, aerospace engineering, ecology, and finance, where optimal configurations or control strategies must be determined for systems governed by ordinary or stochastic differential equations. Despite its significance, the computational challenges associated with these problems have limited their practical use. To address these limitations, this paper introduces a learning-based approach to DE-constrained optimization that combines techniques from proxy optimization and neural differential equations. The proposed approach uses a dual-network architecture, with one approximating the control strategies, focusing on steady-state constraints, and another solving the associated DEs. This combination enables the approximation of optimal strategies while accounting for dynamic constraints in near real-time. Experiments across problems in energy optimization and finance modeling show that this method provides full compliance with dynamic constraints and it produces results up to 25 times more precise than other methods which do not explicitly model the system's dynamic equations.
- Abstract(参考訳): 微分方程式(DE)の制約された最適化は、エネルギーシステム、航空宇宙工学、生態学、金融など、多くの科学・工学分野において重要な役割を果たす。
その重要性にもかかわらず、これらの問題に関連する計算上の課題は実用的利用を制限している。
これらの制約に対処するために、プロキシ最適化とニューラル微分方程式の技法を組み合わせたDEC最適化の学習に基づくアプローチを提案する。
提案手法は二重ネットワークアーキテクチャを用いており、制御戦略を近似し、定常的制約に焦点をあて、関連するDESを解く。
この組み合わせにより、ほぼリアルタイムで動的制約を考慮しつつ最適な戦略を近似することができる。
エネルギー最適化と金融モデルにおける問題に対する実験により、この手法は動的制約に完全に準拠し、システムの動的方程式を明示的にモデル化しない他の方法よりも25倍正確な結果が得られることが示された。
関連論文リスト
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - WANCO: Weak Adversarial Networks for Constrained Optimization problems [5.257895611010853]
まず、拡張ラグランジアン法を用いてミニマックス問題をミニマックス問題に変換する。
次に、それぞれ原始変数と双対変数を表すために、2つの(または複数の)ディープニューラルネットワークを使用します。
ニューラルネットワークのパラメータは、敵のプロセスによって訓練される。
論文 参考訳(メタデータ) (2024-07-04T05:37:48Z) - Optimized QUBO formulation methods for quantum computing [0.4999814847776097]
実世界の金融シナリオにインスパイアされたNPハード最適化問題に対して,我々の手法を適用する方法について述べる。
2つのD波量子異方体にこの問題の事例を提出し、これらのシナリオで使用される標準手法と新しい手法の性能を比較した。
論文 参考訳(メタデータ) (2024-06-11T19:59:05Z) - Consistent Submodular Maximization [27.266085572522847]
定性制約下での単調部分モジュラ関数の最大化は、データマイニングや機械学習におけるいくつかの応用において古典的な最適化課題である。
本稿では, 安定解を持ちながら, ストリーミング方式で要素が到着し, 最適解に対する定数近似が維持されるという, 一貫性の制約のある動的環境において, この問題を考察する。
この設定では、一貫性と近似品質のトレードオフが異なるアルゴリズムを提供しています。
論文 参考訳(メタデータ) (2024-05-30T11:59:58Z) - Constrained or Unconstrained? Neural-Network-Based Equation Discovery from Data [0.0]
我々はPDEをニューラルネットワークとして表現し、物理情報ニューラルネットワーク(PINN)に似た中間状態表現を用いる。
本稿では,この制約付き最適化問題を解くために,ペナルティ法と広く利用されている信頼領域障壁法を提案する。
バーガーズ方程式とコルトヴェーグ・ド・ヴライス方程式に関する我々の結果は、後者の制約付き手法がペナルティ法より優れていることを示している。
論文 参考訳(メタデータ) (2024-05-30T01:55:44Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
機械学習(ML)モデルは、制約付き最適化ソルバをエミュレートするために訓練される。
本稿では,MLモデルを用いて2つの解推定を直接予測する手法を提案する。
これにより、双対目的が損失関数であるエンドツーエンドのトレーニングスキームと、双対上昇法をエミュレートした原始的実現可能性への解推定を可能にする。
論文 参考訳(メタデータ) (2024-03-06T04:43:22Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
本稿では,この目的関数の定式化方法が,PINNアプローチにおける厳密な制約の源であることを示す。
本稿では,逆問題と前方問題の両方に対処可能な多目的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-30T05:55:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。