論文の概要: UlcerGPT: A Multimodal Approach Leveraging Large Language and Vision Models for Diabetic Foot Ulcer Image Transcription
- arxiv url: http://arxiv.org/abs/2410.01989v1
- Date: Wed, 2 Oct 2024 19:51:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 09:44:41.925972
- Title: UlcerGPT: A Multimodal Approach Leveraging Large Language and Vision Models for Diabetic Foot Ulcer Image Transcription
- Title(参考訳): UlcerGPT: 大規模言語と視覚モデルを用いた糖尿病性足底画像の転写
- Authors: Reza Basiri, Ali Abedi, Chau Nguyen, Milos R. Popovic, Shehroz S. Khan,
- Abstract要約: 糖尿病性足潰瘍(DFU)は、入院や下肢切断の主因である。
我々は,DFU画像の書き起こしに大規模言語と視覚モデルを活用する,新しいマルチモーダルアプローチであるUlcerGPTを紹介する。
- 参考スコア(独自算出の注目度): 3.2753373019020016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diabetic foot ulcers (DFUs) are a leading cause of hospitalizations and lower limb amputations, placing a substantial burden on patients and healthcare systems. Early detection and accurate classification of DFUs are critical for preventing serious complications, yet many patients experience delays in receiving care due to limited access to specialized services. Telehealth has emerged as a promising solution, improving access to care and reducing the need for in-person visits. The integration of artificial intelligence and pattern recognition into telemedicine has further enhanced DFU management by enabling automatic detection, classification, and monitoring from images. Despite advancements in artificial intelligence-driven approaches for DFU image analysis, the application of large language models for DFU image transcription has not yet been explored. To address this gap, we introduce UlcerGPT, a novel multimodal approach leveraging large language and vision models for DFU image transcription. This framework combines advanced vision and language models, such as Large Language and Vision Assistant and Chat Generative Pre-trained Transformer, to transcribe DFU images by jointly detecting, classifying, and localizing regions of interest. Through detailed experiments on a public dataset, evaluated by expert clinicians, UlcerGPT demonstrates promising results in the accuracy and efficiency of DFU transcription, offering potential support for clinicians in delivering timely care via telemedicine.
- Abstract(参考訳): 糖尿病性足潰瘍(DFU)は、入院や下肢切断の主たる原因であり、患者や医療システムに大きな負担がかかる。
DFUの早期発見と正確な分類は深刻な合併症の予防に重要であるが、多くの患者は特別なサービスへのアクセスが限られているため、ケアの遅れを経験する。
テレヘルスは、ケアへのアクセスを改善し、対人訪問の必要性を減らす、有望なソリューションとして登場した。
人工知能とパターン認識を遠隔医療に統合することで、画像からの自動検出、分類、監視を可能にすることで、DFU管理をさらに強化した。
DFU画像解析のための人工知能駆動アプローチの進歩にもかかわらず、DFU画像の大規模な言語モデルの適用はまだ検討されていない。
このギャップに対処するために,DFU画像の書き起こしに大規模言語と視覚モデルを活用する新しいマルチモーダルアプローチであるUlcerGPTを導入する。
このフレームワークは、Large LanguageやVision Assistant、Chat Generative Pre-trained Transformerといった高度な視覚と言語モデルを組み合わせて、関心のある領域を共同で検出、分類、ローカライズすることでDFU画像を転写する。
専門医によって評価された公開データセットに関する詳細な実験を通じて、UlcerGPTはDFU転写の正確性と効率の有望な結果を示し、遠隔医療によるタイムリーなケアの提供において、臨床医の潜在的支援を提供する。
関連論文リスト
- Procedure-Aware Surgical Video-language Pretraining with Hierarchical Knowledge Augmentation [51.222684687924215]
手術用ビデオ言語事前学習は、知識領域のギャップとマルチモーダルデータの不足により、独特な課題に直面している。
本稿では,これらの課題に対処するために,階層的知識向上手法と新しい手術的知識向上型ビデオランゲージ事前学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-30T22:21:05Z) - Visual Prompt Engineering for Medical Vision Language Models in Radiology [0.1636269503300992]
ビジョン言語モデル(VLP)は、ゼロショットパフォーマンスの分類を改善するために学習を活用することで、有望なソリューションを提供する。
本稿では,視覚的プロンプト工学の可能性を探究し,重要な領域への潜在的関心を高める。
論文 参考訳(メタデータ) (2024-08-28T13:53:27Z) - Automated Retinal Image Analysis and Medical Report Generation through Deep Learning [3.4447129363520337]
網膜疾患の増加は、医療システムにとって大きな課題となっている。
網膜画像から医療報告を生成する従来の方法は、手動による解釈に依存している。
この論文は、網膜画像の医療レポート生成を自動化する人工知能の可能性について考察する。
論文 参考訳(メタデータ) (2024-08-14T07:47:25Z) - Language Augmentation in CLIP for Improved Anatomy Detection on Multi-modal Medical Images [1.4680035572775536]
ヴィジュアル言語モデルは、医療領域におけるマルチモーダル分類問題に挑戦するための強力なツールとして登場した。
既存の研究は、特定のモダリティや身体領域の臨床的記述に焦点を当てており、全身のマルチモーダル記述を提供するモデルにギャップを残している。
本稿では,マルチモーダルMRIおよびCT画像において,全身の標準化された体局と臓器のリストの自動生成により,このギャップに対処する。
論文 参考訳(メタデータ) (2024-05-31T09:59:11Z) - Self-supervised vision-langage alignment of deep learning representations for bone X-rays analysis [53.809054774037214]
本稿では, 骨X線とフレンチレポートを組み合わせることで, 視覚言語による事前訓練を活用することを提案する。
骨X線表現にまつわる埋め込み空間を形成するために、フランスの報告を統合する最初の研究である。
論文 参考訳(メタデータ) (2024-05-14T19:53:20Z) - MedFLIP: Medical Vision-and-Language Self-supervised Fast Pre-Training with Masked Autoencoder [26.830574964308962]
本稿では,医療分析のための高速言語画像事前学習手法であるMedFLIPを紹介する。
交差ドメインを用いたゼロショット学習のためのMAEを探索し、限られたデータから学習するモデルの能力を向上する。
最後に,医療画像解析におけるゼロショット性能の向上を言語を用いて検証する。
論文 参考訳(メタデータ) (2024-03-07T16:11:43Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
我々は,会話型医療ビジョン言語モデルであるXrayGPTを紹介する。
胸部X線写真に関するオープンエンドの質問を分析し、答えることができる。
自由テキストラジオグラフィーレポートから217kの対話的かつ高品質な要約を生成する。
論文 参考訳(メタデータ) (2023-06-13T17:59:59Z) - Cross-Modal Causal Intervention for Medical Report Generation [109.83549148448469]
医療報告生成(MRG)は、コンピュータ支援診断と治療指導に不可欠である。
視覚的および言語的バイアスによって引き起こされる画像テキストデータ内の素早い相関のため、病変領域を確実に記述した正確なレポートを生成することは困難である。
本稿では,視覚分解モジュール (VDM) と言語分解モジュール (LDM) からなるMRGのための新しい視覚言語因果干渉 (VLCI) フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-16T07:23:55Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。