論文の概要: StateAct: Enhancing LLM Base Agents via Self-prompting and State-tracking
- arxiv url: http://arxiv.org/abs/2410.02810v3
- Date: Tue, 08 Apr 2025 06:37:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:27:47.073421
- Title: StateAct: Enhancing LLM Base Agents via Self-prompting and State-tracking
- Title(参考訳): StateAct: セルフプロンピングとステートトラッキングによるLDMベースエージェントの強化
- Authors: Nikolai Rozanov, Marek Rei,
- Abstract要約: StateActは、大規模言語モデル(LLM)のための新しく効率的なベースエージェントである
1)自己プロンピングによって意思決定を強化し、各ステップにおけるタスク目標を強化し、(2)状態の連鎖を強化する。
StateActは、Alfworldで10%以上、Textcraftで30%、Webshopで7%以上、これまで最高のベースエージェントだったReActを上回っている。
- 参考スコア(独自算出の注目度): 10.359008237358603
- License:
- Abstract: Large language models (LLMs) are increasingly used as autonomous agents, tackling tasks from robotics to web navigation. Their performance depends on the underlying base agent. Existing methods, however, struggle with long-context reasoning and goal adherence. We introduce StateAct, a novel and efficient base agent that enhances decision-making through (1) self-prompting, which reinforces task goals at every step, and (2) chain-of-states, an extension of chain-of-thought that tracks state information over time. StateAct outperforms ReAct, the previous best base agent, by over 10% on Alfworld, 30% on Textcraft, and 7% on Webshop across multiple frontier LLMs. We also demonstrate that StateAct can be used as a drop-in replacement for ReAct with advanced LLM agent methods such as test-time scaling, yielding an additional 12% gain on Textcraft. By improving efficiency and long-range reasoning without requiring additional training or retrieval, StateAct provides a scalable foundation for LLM agents. We open source our code to support further research at https://github.com/ai-nikolai/stateact .
- Abstract(参考訳): 大規模言語モデル(LLM)は、ロボット工学からWebナビゲーションまでタスクに対処する自律エージェントとして、ますます使われている。
パフォーマンスはベースエージェントに依存します。
しかし、既存の手法は、長いコンテキストの推論とゴールの順守に苦しむ。
本稿では,(1)自己プロンプトによる意思決定を強化し,各ステップにおけるタスク目標を強化し,(2)時間とともに状態情報を追跡するチェーン・オブ・ステートを拡張した,新規で効率的なベースエージェントであるStateActを紹介する。
StateActは、Alfworldで10%以上、Textcraftで30%、Webshopで7%以上、これまで最高のベースエージェントだったReActを上回っている。
また、StateActは、テストタイムスケーリングなどの高度なLLMエージェントメソッドでReActのドロップイン代替として使用することができ、Textcraftでさらに12%の利得が得られることを実証した。
トレーニングや検索を必要とせずに効率性と長距離推論を改善することで、StateActはLLMエージェントにスケーラブルな基盤を提供する。
私たちは、https://github.com/ai-nikolai/stateact.orgでさらなる研究をサポートするために、コードをオープンソースにしています。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - Reinforcement Learning for Long-Horizon Interactive LLM Agents [56.9860859585028]
インタラクティブデジタルエージェント(IDA)は、ステートフルなデジタル環境のAPIを利用して、ユーザの要求に応じてタスクを実行する。
対象環境で直接IDAを訓練する強化学習(RL)手法を提案する。
我々は、近似ポリシー最適化のデータおよびメモリ効率の亜種である LOOP を導出する。
論文 参考訳(メタデータ) (2025-02-03T18:35:42Z) - zsLLMCode: An Effective Approach for Functional Code Embedding via LLM with Zero-Shot Learning [6.976968804436321]
大型言語モデル(LLM)はゼロショット学習の能力を持ち、訓練や微調整を必要としない。
LLMを用いた関数型コード埋め込みを生成する新しいアプローチであるzsLLMCodeを提案する。
論文 参考訳(メタデータ) (2024-09-23T01:03:15Z) - Sub-goal Distillation: A Method to Improve Small Language Agents [21.815417165548187]
大規模言語モデル(LLM)は対話型タスクにおけるエージェントとして大きな可能性を証明している。
数十億のパラメータを持つLLMの性能を、はるかに小さな言語モデルに転送する手法を提案する。
困難かつマルチタスクな対話型テキスト環境であるScienceWorldでは,基本動作のみに基づく標準的な模倣学習を16.7%超えている。
論文 参考訳(メタデータ) (2024-05-04T20:34:06Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - Continual Learning for Large Language Models: A Survey [95.79977915131145]
大規模言語モデル(LLM)は、大規模なトレーニングコストが高いため、頻繁な再トレーニングには適さない。
本稿では,LLMの連続学習に関する最近の研究について述べる。
論文 参考訳(メタデータ) (2024-02-02T12:34:09Z) - Efficient Tool Use with Chain-of-Abstraction Reasoning [63.08202389132155]
大規模言語モデル(LLM)は、現実世界の知識に対する推論の基礎となる必要がある。
マルチステップ推論問題におけるツールの実行には,微調整LDMエージェントの課題が残されている。
マルチステップ推論におけるツールの活用方法として, LLM の新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-30T21:53:30Z) - LLM Augmented Hierarchical Agents [4.574041097539858]
強化学習(Reinforcement Learning, RL)を用いた長期的時間的拡張タスクの解決は困難であり、事前知識(あるいは表層ラサ学習)を伴わない学習の一般的な実践によって複雑化される。
本稿では,LL を用いて環境から学習する上での LLM の計画能力を活用し,LLM を用いて長期的タスクを解く階層的エージェントを実現する。
このアプローチは、MiniGrid、SkillHack、Crafterなどのシミュレーション環境や、ブロック操作タスクにおける実際のロボットアームで評価される。
論文 参考訳(メタデータ) (2023-11-09T18:54:28Z) - Scaling Sentence Embeddings with Large Language Models [43.19994568210206]
本研究では,文埋め込み性能の向上を目的としたテキスト内学習手法を提案する。
提案手法では,従来のプロンプトに基づく表現手法を自己回帰モデルに適用する。
モデルサイズをスケールすることで、数千億以上のパラメータへのスケーリングが意味的なテキスト類似性タスクのパフォーマンスを損なうことが分かる。
論文 参考訳(メタデータ) (2023-07-31T13:26:03Z) - Enabling Intelligent Interactions between an Agent and an LLM: A Reinforcement Learning Approach [31.6589518077397]
大規模言語モデル(LLM)は、大量のテキストデータセットから得られた膨大な量の世界の知識を符号化する。
LLMは、高レベルな命令を提供することで、複雑なシーケンシャルな意思決定タスクを解決するための実施エージェントを支援することができる。
本研究では,高レベルの命令に対してLLMを問合せする必要がある場合に学習する強化学習ベースのアプローチである When2Ask を提案する。
論文 参考訳(メタデータ) (2023-06-06T11:49:09Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
複数のタスク入力を処理するために,LLMのコンテキスト内学習機能を活用したOverPromptを提案する。
本実験により,OverPromptはタスク性能を著しく損なうことなく,コスト効率の良いゼロショット分類を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-05-24T10:08:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。