論文の概要: Safeguard is a Double-edged Sword: Denial-of-service Attack on Large Language Models
- arxiv url: http://arxiv.org/abs/2410.02916v1
- Date: Wed, 23 Oct 2024 17:26:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 04:55:13.202141
- Title: Safeguard is a Double-edged Sword: Denial-of-service Attack on Large Language Models
- Title(参考訳): SafeguardはDouble-edged Sword:大規模言語モデルに対するDoS攻撃
- Authors: Qingzhao Zhang, Ziyang Xiong, Z. Morley Mao,
- Abstract要約: 大規模言語モデル(LLM)に対する新たなDoS攻撃を提案する。
ソフトウェアやフィッシング攻撃によって、攻撃者は短い、一見無害な敵のプロンプトを設定ファイルのユーザープロンプトに挿入する。
我々の攻撃は、Llama Guard 3の97%以上のユーザリクエストを普遍的にブロックする、約30文字の、一見安全な敵のプロンプトを自動的に生成できる。
- 参考スコア(独自算出の注目度): 7.013820690538764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safety is a paramount concern of large language models (LLMs) in their open deployment. To this end, safeguard methods aim to enforce the ethical and responsible use of LLMs through safety alignment or guardrail mechanisms. However, we found that the malicious attackers could exploit false positives of safeguards, i.e., fooling the safeguard model to block safe content mistakenly, leading to a new denial-of-service (DoS) attack on LLMs. Specifically, by software or phishing attacks on user client software, attackers insert a short, seemingly innocuous adversarial prompt into to user prompt templates in configuration files; thus, this prompt appears in final user requests without visibility in the user interface and is not trivial to identify. By designing an optimization process that utilizes gradient and attention information, our attack can automatically generate seemingly safe adversarial prompts, approximately only 30 characters long, that universally block over 97\% of user requests on Llama Guard 3. The attack presents a new dimension of evaluating LLM safeguards focusing on false positives, fundamentally different from the classic jailbreak.
- Abstract(参考訳): 安全性は、オープンデプロイメントにおける大きな言語モデル(LLM)の最大の関心事である。
この目的のために、安全確保法は、安全アライメントやガードレール機構を通じて、LLMの倫理的かつ責任ある使用を強制することを目的としている。
しかし、悪意のある攻撃者は、セーフガードの偽陽性を悪用し、すなわち、セーフガードモデルを騙してセーフコンテンツが誤ってブロックされることを発見し、LLMに対する新たなDoS攻撃につながった。
具体的には、ユーザークライアントソフトウェアに対するソフトウェアやフィッシング攻撃によって、攻撃者は構成ファイルのテンプレートに短い、一見無害な敵のプロンプトを挿入する。
勾配情報と注意情報を利用する最適化プロセスの設計により、Llama Guard 3上の99%以上のユーザリクエストを普遍的にブロックする、約30文字の、一見安全な敵のプロンプトを自動的に生成できる。
この攻撃は、昔ながらのジェイルブレイクと根本的に異なる偽陽性に焦点を当てたLSMのセーフガードを評価する新しい次元を示す。
関連論文リスト
- FATH: Authentication-based Test-time Defense against Indirect Prompt Injection Attacks [45.65210717380502]
大規模言語モデル(LLM)は、現実世界のアプリケーションのための追加ツールとテキスト情報を備えたバックボーンとして広くデプロイされている。
プロンプトインジェクション攻撃は特に脅威であり、外部のテキスト情報に悪意のあるインストラクションを注入することで、LLMを利用して攻撃者が望む答えを生成することができる。
本稿では,AuThentication with Hash-based tags (FATH)という新しいテストタイム防衛戦略を紹介する。
論文 参考訳(メタデータ) (2024-10-28T20:02:47Z) - SPIN: Self-Supervised Prompt INjection [16.253558670549697]
敵の攻撃と脱獄攻撃は 安全アライメントを回避し モデルに有害な反応をもたらすよう提案されている
自己監督型プロンプト注入(SPIN)を導入し,LSMに対するこれらの様々な攻撃を検出し,逆転させることができる。
本システムでは,攻撃成功率を87.9%まで削減し,ユーザ要求の良質な性能を維持しながら,攻撃成功率を最大で87.9%削減する。
論文 参考訳(メタデータ) (2024-10-17T05:40:54Z) - ASPIRER: Bypassing System Prompts With Permutation-based Backdoors in LLMs [17.853862145962292]
システムプロンプトを体系的に回避する新しいバックドアアタックを導入する。
本手法は,98.58%のクリーン精度(CACC)を維持しつつ,攻撃成功率(ASR)を99.50%まで達成する。
論文 参考訳(メタデータ) (2024-10-05T02:58:20Z) - MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks [2.873719680183099]
本稿では,大規模言語モデル(LLM)における脱獄予防の重要性を論じる。
我々は,既存の最先端ガードレールの限界を超えるよう設計された,新しいガードレールアーキテクチャであるMoJEを紹介する。
MoJEは、モデル推論中に最小限の計算オーバーヘッドを維持しながら、ジェイルブレイク攻撃の検出に優れる。
論文 参考訳(メタデータ) (2024-09-26T10:12:19Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
本稿では,PAD(Adversarial Defender Training)を用いたPurple-teaming LLMを提案する。
PADは、赤チーム(アタック)技術と青チーム(セーフティトレーニング)技術を新たに取り入れることで、LSMを保護するために設計されたパイプラインである。
PADは、効果的な攻撃と堅牢な安全ガードレールの確立の両方において、既存のベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2024-07-01T23:25:30Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
本稿では,大規模言語モデル(LLM)のための新しいプロンプトベースの防御機構であるDPPを紹介する。
従来のアプローチとは異なり、DPP は LLM の高能率を維持しながら最小の攻撃成功率 (ASR) を達成するように設計されている。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルによる実験結果から,DSPの堅牢性と適応性が確認された。
論文 参考訳(メタデータ) (2024-05-30T14:40:35Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
textbfAdaptive textbfShield Promptingを提案する。これは、MLLMを構造ベースのジェイルブレイク攻撃から守るための防御プロンプトで入力をプリペイドする。
我々の手法は、構造に基づくジェイルブレイク攻撃に対するMLLMの堅牢性を一貫して改善することができる。
論文 参考訳(メタデータ) (2024-03-14T15:57:13Z) - AutoDAN: Interpretable Gradient-Based Adversarial Attacks on Large
Language Models [55.748851471119906]
LLM(Large Language Models)の安全性の整合性は、手動のジェイルブレイク攻撃や(自動)敵攻撃によって損なわれる可能性がある。
最近の研究は、これらの攻撃に対する防御が可能であることを示唆している。敵攻撃は無限だが読めないジベリッシュプロンプトを生成し、難易度に基づくフィルタによって検出できる。
両攻撃の強度をマージする,解釈可能な勾配に基づく対向攻撃であるAutoDANを導入する。
論文 参考訳(メタデータ) (2023-10-23T17:46:07Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
SmoothLLMは,大規模言語モデル(LLM)に対するジェイルブレーキング攻撃を軽減するために設計された,最初のアルゴリズムである。
敵が生成したプロンプトが文字レベルの変化に対して脆弱であることから、我々の防衛はまず、与えられた入力プロンプトの複数のコピーをランダムに摂動し、対応する予測を集約し、敵の入力を検出する。
論文 参考訳(メタデータ) (2023-10-05T17:01:53Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
大規模言語モデル(LLM)は、様々なアプリケーションに統合されつつある。
本稿では、プロンプトインジェクション攻撃を用いて、攻撃者が元の命令をオーバーライドし、制御を採用する方法を示す。
我々は、コンピュータセキュリティの観点から、影響や脆弱性を体系的に調査する包括的な分類法を導出する。
論文 参考訳(メタデータ) (2023-02-23T17:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。