論文の概要: Generating Equivalent Representations of Code By A Self-Reflection Approach
- arxiv url: http://arxiv.org/abs/2410.03351v1
- Date: Fri, 4 Oct 2024 12:17:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 22:48:52.596158
- Title: Generating Equivalent Representations of Code By A Self-Reflection Approach
- Title(参考訳): 自己回帰法によるコード等価表現の生成
- Authors: Jia Li, Ge Li, Lecheng Wang, Hao Zhu, Zhi Jin,
- Abstract要約: コードの等価表現(ER)は、コード自体と同じセマンティクスを保持する。
コードのERを自動的に生成する方法は、依然としてオープンな課題である。
本稿では,ERを生成するための自己回帰手法を提案する。
- 参考スコア(独自算出の注目度): 43.998628602592035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Equivalent Representations (ERs) of code are textual representations that preserve the same semantics as the code itself, e.g., natural language comments and pseudocode. ERs play a critical role in software development and maintenance. However, how to automatically generate ERs of code remains an open challenge. In this paper, we propose a self-reflection approach to generating ERs of code. It enables two Large Language Models (LLMs) to work mutually and produce an ER through a reflection process. Depending on whether constraints on ERs are applied, our approach generates ERs in both open and constrained settings. We conduct a empirical study to generate ERs in two settings and obtain eight findings. (1) Generating ERs in the open setting. In the open setting, we allow LLMs to represent code without any constraints, analyzing the resulting ERs and uncovering five key findings. These findings shed light on how LLMs comprehend syntactic structures, APIs, and numerical computations in code. (2) Generating ERs in the constrained setting. In the constrained setting, we impose constraints on ERs, such as natural language comments, pseudocode, and flowcharts. This allows our approach to address a range of software engineering tasks. Based on our experiments, we have three findings demonstrating that our approach can effectively generate ERs that adhere to specific constraints, thus supporting various software engineering tasks. (3) Future directions. We also discuss potential future research directions, such as deriving intermediate languages for code generation, exploring LLM-friendly requirement descriptions, and further supporting software engineering tasks. We believe that this paper will spark discussions in research communities and inspire many follow-up studies.
- Abstract(参考訳): コードの等価表現(ER)は、コード自身、例えば自然言語のコメントや擬似コードと同じ意味を保存したテキスト表現である。
ERはソフトウェア開発とメンテナンスにおいて重要な役割を担います。
しかし、コードのERを自動的に生成する方法は、依然としてオープンな課題である。
本稿では,ERを生成するための自己回帰手法を提案する。
2つの大規模言語モデル(LLM)を相互に動作させ、リフレクションプロセスを通じてERを生成する。
ERの制約が適用されるかどうかによって、我々の手法はオープンな設定と制約のある設定の両方でERを生成する。
ERを2つの設定で生成し,8つの結果を得るための実証的研究を行った。
1)オープン環境でERを生成する。
オープンな環境では、LLMは制約なしにコードを表現することができ、その結果のERを分析し、5つの重要な発見を明らかにする。
これらの発見は、LLMがコード内の構文構造、API、数値計算をどのように理解したかに光を当てた。
2)制約された環境でERを生成する。
制約された設定では、自然言語コメント、擬似コード、フローチャートなどのERに制約を課す。
これにより、当社のアプローチは、さまざまなソフトウェアエンジニアリングタスクに対処できます。
実験結果から,本手法が特定の制約に従うERを効果的に生成し,様々なソフトウェア工学タスクをサポートすることを示す3つの知見を得た。
(3)今後の方向性。
また、コード生成のための中間言語の作成、LCMフレンドリーな要件記述の探索、ソフトウェア工学タスクのさらなる支援など、将来的な研究の方向性についても論じる。
本論文は,研究コミュニティの議論を喚起し,多くのフォローアップ研究を刺激すると考えられる。
関連論文リスト
- RGD: Multi-LLM Based Agent Debugger via Refinement and Generation Guidance [0.6062751776009752]
大規模言語モデル(LLM)は、コード生成タスクにおいて驚くべきポテンシャルを示しています。
LLMはタスク記述に基づいてコードを生成することができるが、精度は限られている。
コード生成と自動デバッグのためのLLMエージェントの新しいアーキテクチャ:Refinement and Guidancebug (RGD)を紹介する。
RGDはコード生成タスクを複数のステップに分割し、より明確なワークフローを確保し、自己回帰とフィードバックに基づいた反復的なコード改善を可能にする。
論文 参考訳(メタデータ) (2024-10-02T05:07:02Z) - Learning vs Retrieval: The Role of In-Context Examples in Regression with LLMs [18.983753573277596]
そこで本研究では,内部知識の獲得と学習を併用した,文脈内学習機構の評価フレームワークを提案する。
まず、LLMが実世界のデータセット上で回帰処理を行い、LLMが内部知識を取得する範囲を計測する実験を設計できることを示す。
本稿では,これらのメカニズムが様々な要因によって引き起こされる度合いを詳細に分析する。
論文 参考訳(メタデータ) (2024-09-06T14:46:37Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning [59.07490387145391]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて印象的な機能を示している。
情報検索(IR)タスクへのそれらの適用は、自然言語における多くのIR固有の概念の頻繁な発生のため、いまだに困難である。
我々は,3つの基本IRカテゴリにまたがる20のタスクを含む新しいインストラクションチューニングデータセット InterS を導入する。
論文 参考訳(メタデータ) (2024-01-12T12:10:28Z) - Benchmarking Large Language Models on Controllable Generation under
Diversified Instructions [34.89012022437519]
大型言語モデル (LLM) は命令追従能力に優れていた。
様々な命令に関係のある明示的な制約にどの程度対応できるかは、いまだに不明である。
命令に対するLLMの応答を様々な制約で評価する新しいベンチマークであるCoDI-Evalを提案する。
論文 参考訳(メタデータ) (2024-01-01T07:35:31Z) - kNN-ICL: Compositional Task-Oriented Parsing Generalization with Nearest
Neighbor In-Context Learning [50.40636157214161]
Task-Oriented Parsing (TOP)により、会話アシスタントは自然言語で表現されたユーザーコマンドを解釈できる。
LLMは、自然言語のプロンプトに基づいて、コンピュータプログラムにおいて印象的な性能を達成した。
本稿では,LLMのセマンティック解析機能を活用することに焦点を当てる。
論文 参考訳(メタデータ) (2023-12-17T17:26:50Z) - Cost-Efficient Prompt Engineering for Unsupervised Entity Resolution [2.6080756513915824]
エンティティ分解(ER)は、2つのエンティティが同じ基礎エンティティをいつ参照するかを半自動決定する問題である。
最近の大規模言語モデル(LLM)はERをよりシームレスでドメインに依存しないものにする機会を提供する。
比較的単純で費用効率のよいERプロンプトエンジニアリング手法を検討し、2つの実世界のデータセット上でERに適用する。
論文 参考訳(メタデータ) (2023-10-09T21:57:07Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
本稿では,これらの課題に対処するために,13Bパラメータを持つ生成判断器Auto-Jを提案する。
我々のモデルは,大規模な実環境シナリオ下でのユーザクエリとLLM生成応答に基づいて訓練されている。
実験的に、Auto-Jはオープンソースモデルとクローズドソースモデルの両方を含む、強力なライバルのシリーズを上回っている。
論文 参考訳(メタデータ) (2023-10-09T07:27:15Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
本稿では,コードと推論能力の相関性を測定するために,複雑性に富んだ推論スコア(CIRS)を提案する。
具体的には、抽象構文木を用いて構造情報をエンコードし、論理的複雑性を計算する。
コードはhttps://github.com/zjunlp/EasyInstructのEasyInstructフレームワークに統合される。
論文 参考訳(メタデータ) (2023-08-29T17:22:39Z) - Large Language Models are Few-Shot Summarizers: Multi-Intent Comment
Generation via In-Context Learning [34.006227676170504]
本研究では,大規模言語モデル(LLM)を用いて,開発者の多様な意図を満たすコメントを生成することの実現可能性について検討する。
2つの大規模なデータセットの実験は、私たちの洞察の理論的根拠を示しています。
論文 参考訳(メタデータ) (2023-04-22T12:26:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。