論文の概要: Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
- arxiv url: http://arxiv.org/abs/2410.03496v1
- Date: Fri, 4 Oct 2024 15:10:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 21:50:00.760247
- Title: Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
- Title(参考訳): Fourier PINN: 強い境界条件から適応的なFourierベースへ
- Authors: Madison Cooley, Varun Shankar, Robert M. Kirby, Shandian Zhe,
- Abstract要約: 我々は,Dirichlet BCs に対する PINN の強い境界条件 (BC) について検討した。
強いBC PINNは、ターゲット溶液の高周波成分の振幅をよりよく学習できることがわかった。
本稿では,Fourier PINN を提案する。Fourier PINN は単純で汎用的で強力な手法で,Purier PINN を事前定義された高密度なフーリエベースで拡張する。
- 参考スコア(独自算出の注目度): 22.689531776611084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interest is rising in Physics-Informed Neural Networks (PINNs) as a mesh-free alternative to traditional numerical solvers for partial differential equations (PDEs). However, PINNs often struggle to learn high-frequency and multi-scale target solutions. To tackle this problem, we first study a strong Boundary Condition (BC) version of PINNs for Dirichlet BCs and observe a consistent decline in relative error compared to the standard PINNs. We then perform a theoretical analysis based on the Fourier transform and convolution theorem. We find that strong BC PINNs can better learn the amplitudes of high-frequency components of the target solutions. However, constructing the architecture for strong BC PINNs is difficult for many BCs and domain geometries. Enlightened by our theoretical analysis, we propose Fourier PINNs -- a simple, general, yet powerful method that augments PINNs with pre-specified, dense Fourier bases. Our proposed architecture likewise learns high-frequency components better but places no restrictions on the particular BCs or problem domains. We develop an adaptive learning and basis selection algorithm via alternating neural net basis optimization, Fourier and neural net basis coefficient estimation, and coefficient truncation. This scheme can flexibly identify the significant frequencies while weakening the nominal frequencies to better capture the target solution's power spectrum. We show the advantage of our approach through a set of systematic experiments.
- Abstract(参考訳): 偏微分方程式(PDE)の従来の数値解法に代わるメッシュフリーの代替として、物理情報ニューラルネットワーク(PINN)への関心が高まっている。
しかし、PINNは高頻度でマルチスケールなターゲットソリューションを学ぶのに苦労することが多い。
この問題に対処するために,我々はまず,ディリクレ BC に対する PINN の強い境界条件 (BC) について検討し,標準 PINN と比較して相対誤差が一貫した減少を観察する。
次にフーリエ変換と畳み込み定理に基づく理論的解析を行う。
強いBC PINNは、ターゲット溶液の高周波成分の振幅をよりよく学習できることがわかった。
しかし、強力なBC PINNのアーキテクチャを構築することは、多くのBCやドメインのジオメトリにとって困難である。
理論解析により,Fourier PINN を提案する。Fourier PINN は単純で汎用的で強力な手法で,あらかじめ特定された密度の高いFourier ベースで PINN を増強する。
提案アーキテクチャも同様に高周波成分を学習するが、特定のBCや問題領域に制限はない。
本研究では,ニューラルネットベース最適化,フーリエとニューラルネットベースベース推定,係数切り抜きによる適応学習とベース選択アルゴリズムを開発した。
このスキームは、高い周波数を柔軟に識別し、名目周波数を弱め、ターゲットの溶液のパワースペクトルをよりよく捉えることができる。
我々は,一連の系統的な実験を通じて,アプローチの利点を示す。
関連論文リスト
- RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks [22.39904196850583]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)の数値解を近似するための有望なディープラーニングフレームワークとして登場した。
我々は,この制限に対処するために,新しいTransformerベースのフレームワークであるPINNsFormerを紹介した。
PINNsFormerは、PINNの障害モードや高次元PDEなど、様々なシナリオにおいて優れた一般化能力と精度を実現する。
論文 参考訳(メタデータ) (2023-07-21T18:06:27Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Power and limitations of single-qubit native quantum neural networks [5.526775342940154]
量子ニューラルネットワーク(QNN)は、機械学習、化学、最適化の応用を確立するための主要な戦略として登場した。
量子ニューラルネットワークのデータ再アップロードの表現能力に関する理論的枠組みを定式化する。
論文 参考訳(メタデータ) (2022-05-16T17:58:27Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
PNN(Polynomial Neural Network)は、高頻度情報を重要視する画像生成と顔認識に特に有効であることが示されている。
これまでの研究では、ニューラルネットワークが低周波関数に対して$textitspectral bias$を示しており、トレーニング中に低周波成分のより高速な学習をもたらすことが示されている。
このような研究に触発されて、我々はPNNのTangent Kernel(NTK)のスペクトル分析を行う。
我々は、最近提案されたPNNのパラメトリゼーションである$Pi$-Netファミリがスピードアップすることを発見した。
論文 参考訳(メタデータ) (2022-02-27T23:12:43Z) - Functional Regularization for Reinforcement Learning via Learned Fourier
Features [98.90474131452588]
本稿では、入力を学習されたフーリエベースに埋め込むことにより、深層強化学習のための簡単なアーキテクチャを提案する。
その結果、状態ベースと画像ベースの両方のRLのサンプル効率が向上することがわかった。
論文 参考訳(メタデータ) (2021-12-06T18:59:52Z) - A Physics Informed Neural Network Approach to Solution and
Identification of Biharmonic Equations of Elasticity [0.0]
本研究では,エアリーストレス関数とフーリエ級数を組み合わせた物理情報ニューラルネットワーク(PINN)の適用について検討する。
両高調波PDEに対するPINNソリューションの精度は, エアリー応力関数による特徴空間の強化により著しく向上することがわかった。
論文 参考訳(メタデータ) (2021-08-16T17:19:50Z) - Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable
domain decomposition approach for solving differential equations [20.277873724720987]
我々はFBPINN(Finite Basis PINNs)と呼ばれる微分方程式に関連する大きな問題を解くための新しいスケーラブルなアプローチを提案する。
FBPINNは古典的有限要素法に着想を得ており、微分方程式の解はコンパクトな支持を持つ基底関数の有限集合の和として表される。
FBPINNでは、ニューラルネットワークを使ってこれらの基底関数を学習する。
論文 参考訳(メタデータ) (2021-07-16T13:03:47Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
最適な電力フロー(ACOPF)のソリューションを解決するために、ディープニューラルネットワーク(DNN)を提案します。
提案されたSIDNNは、幅広いOPFスキームと互換性がある。
他のLearning-to-OPFスキームとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-03-27T00:45:23Z) - Frequency Principle: Fourier Analysis Sheds Light on Deep Neural Networks [9.23835409289015]
本稿では,フーリエ解析の観点から,ディープニューラルネットワーク(DNN)の学習過程について検討する。
非常に普遍的な周波数原理(F-Principle)を実証します -- DNNは低周波数から高周波数のターゲット関数によく適合します。
論文 参考訳(メタデータ) (2019-01-19T13:37:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。