論文の概要: A Physics Informed Neural Network Approach to Solution and
Identification of Biharmonic Equations of Elasticity
- arxiv url: http://arxiv.org/abs/2108.07243v1
- Date: Mon, 16 Aug 2021 17:19:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-17 14:51:47.249107
- Title: A Physics Informed Neural Network Approach to Solution and
Identification of Biharmonic Equations of Elasticity
- Title(参考訳): 物理学インフォームドニューラルネットワークによる弾性の双調和方程式の解と同定
- Authors: Mohammad Vahab and Ehsan Haghighat and Maryam Khaleghi and Nasser
Khalili
- Abstract要約: 本研究では,エアリーストレス関数とフーリエ級数を組み合わせた物理情報ニューラルネットワーク(PINN)の適用について検討する。
両高調波PDEに対するPINNソリューションの精度は, エアリー応力関数による特徴空間の強化により著しく向上することがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore an application of the Physics Informed Neural Networks (PINNs) in
conjunction with Airy stress functions and Fourier series to find optimal
solutions to a few reference biharmonic problems of elasticity and elastic
plate theory. Biharmonic relations are fourth-order partial differential
equations (PDEs) that are challenging to solve using classical numerical
methods, and have not been addressed using PINNs. Our work highlights a novel
application of classical analytical methods to guide the construction of
efficient neural networks with the minimal number of parameters that are very
accurate and fast to evaluate. In particular, we find that enriching feature
space using Airy stress functions can significantly improve the accuracy of
PINN solutions for biharmonic PDEs.
- Abstract(参考訳): 本研究では,エアリー応力関数とフーリエ級数との併用による物理情報ニューラルネットワーク(PINN)の適用について検討し,弾性および弾性板理論の参照バイハーモニック問題に対する最適解を求める。
バイハーモニックな関係は古典的な数値法で解くのが難しい4階偏微分方程式(PDE)であり、PINNでは対処されていない。
本研究は、非常に正確で評価が速いパラメータを最小に含む効率的なニューラルネットワークの構築を導く、古典的解析手法の新たな応用を強調する。
特に,Airy ストレス関数を用いた特徴空間の強化は,バイハーモニック PDE に対するPINN ソリューションの精度を大幅に向上させることができる。
関連論文リスト
- An efficient wavelet-based physics-informed neural networks for singularly perturbed problems [0.0]
物理インフォームドニューラルネットワーク(英: Physics-informed Neural Network、PINN)は、物理学を微分方程式として利用するディープラーニングモデルのクラスである。
単一摂動微分方程式を解くために,効率的なウェーブレットベースPINNモデルを提案する。
このアーキテクチャにより、トレーニングプロセスはウェーブレット空間内のソリューションを探索することができ、プロセスがより速く、より正確になる。
論文 参考訳(メタデータ) (2024-09-18T10:01:37Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - Enriched Physics-informed Neural Networks for Dynamic
Poisson-Nernst-Planck Systems [0.8192907805418583]
本稿では、動的Poisson-Nernst-Planck(PNP)方程式を解くために、メッシュレス深層学習アルゴリズム、EPINN(enriched Physics-informed Neural Network)を提案する。
EPINNは、従来の物理インフォームドニューラルネットワークを基盤フレームワークとして、損失関数のバランスをとるために適応的な損失重みを追加する。
数値計算の結果, 結合された非線形系の解法において, 従来の数値法よりも適用性が高いことがわかった。
論文 参考訳(メタデータ) (2024-02-01T02:57:07Z) - Separable Physics-Informed Neural Networks for the solution of
elasticity problems [0.0]
深部エネルギー法(DEM)と連動して、分離可能な物理情報ニューラルネットワーク(SPINN)に基づく弾性問題の解法を提案する。
数値実験により、この手法はバニラ物理情報ニューラルネットワーク(PINN)やSPINNよりもはるかに高い収束率と精度を有することが示された。
論文 参考訳(メタデータ) (2024-01-24T14:34:59Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [4.425915683879297]
グラフニューラルネットワーク(GNN)とラジアル基底関数有限差分(RBF-FD)に基づく新しいフレームワークを提案する。
RBF-FDはモデルトレーニングを導くために微分方程式の高精度差分形式を構築するために用いられる。
提案アルゴリズムの一般化可能性,精度,効率性を,異なるPDEパラメータで説明する。
論文 参考訳(メタデータ) (2022-12-06T10:08:02Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
物理インフォームドニューラルネットワーク(PINN)アルゴリズムは、偏微分方程式(PDE)を含む幅広い問題を解く上で有望な結果を示している。
彼らはしばしば、スペクトルバイアスと呼ばれる現象のために、ターゲット関数が高周波の特徴を含むとき、望ましい解に収束しない。
本研究は, 運動量による勾配降下下で進化するPINNのトレーニングダイナミクスを, NTK(Neural Tangent kernel)を用いて研究するものである。
論文 参考訳(メタデータ) (2022-06-29T19:03:10Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。