Repurposing Foundation Model for Generalizable Medical Time Series Classification
- URL: http://arxiv.org/abs/2410.03794v2
- Date: Mon, 19 May 2025 17:31:13 GMT
- Title: Repurposing Foundation Model for Generalizable Medical Time Series Classification
- Authors: Nan Huang, Haishuai Wang, Zihuai He, Marinka Zitnik, Xiang Zhang,
- Abstract summary: FORMED is a framework for repurposing a backbone foundation model to enable highly generalizable MedTS classification on unseen datasets.<n>We evaluate FORMED on 5 diverse MedTS datasets, benchmarking against 11 Task-Specific Models (TSM) and 4 Task-Specific Adaptation (TSA) methods.<n>Our results demonstrate FORMED's dominant performance, achieving up to 35% absolute improvement in F1-score (on ADFTD dataset) over specialized baselines.
- Score: 16.21546283978257
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical time series (MedTS) classification suffers from poor generalizability in real-world deployment due to inter- and intra-dataset heterogeneity, such as varying numbers of channels, signal lengths, task definitions, and patient characteristics. To address this, we propose FORMED, a novel framework for repurposing a backbone foundation model, pre-trained on generic time series, to enable highly generalizable MedTS classification on unseen datasets. FORMED combines the backbone with a novel classifier comprising two components: (1) task-specific channel embeddings and label queries, dynamically sized to match any number of channels and target classes, and (2) a shared decoding attention layer, jointly trained across datasets to capture medical domain knowledge through task-agnostic feature-query interactions. After repurposing, FORMED achieves seamless adaptation to unseen MedTS datasets through lightweight label query training (0.1% of parameters), eliminating the need for full fine-tuning or architectural redesign. We evaluate FORMED on 5 diverse MedTS datasets, benchmarking against 11 Task-Specific Models (TSM) and 4 Task-Specific Adaptation (TSA) methods. Our results demonstrate FORMED's dominant performance, achieving up to 35% absolute improvement in F1-score (on ADFTD dataset) over specialized baselines. Further analysis reveals consistent generalization across varying channel configurations, time series lengths, and clinical tasks, which are key challenges in real-world deployment. By decoupling domain-invariant representation learning from task-specific adaptation, FORMED establishes a scalable and resource-efficient paradigm for foundation model repurposing in healthcare. This approach prioritizes clinical adaptability over rigid task-centric design, offering a practical pathway for real-world implementation.
Related papers
- QoQ-Med: Building Multimodal Clinical Foundation Models with Domain-Aware GRPO Training [27.457139119626884]
QoQ-Med is the first open generalist clinical foundation model that jointly reasons across medical images, time-series signals, and text reports.<n>We show that DRPO training boosts diagnostic performance by 43% in macro-F1 on average across all visual domains.<n>With QoQ-Med trained on intensive segmentation data, it is able to highlight salient regions related to the diagnosis, with an IoU 10x higher than open models.
arXiv Detail & Related papers (2025-05-31T21:02:52Z) - Med-LEGO: Editing and Adapting toward Generalist Medical Image Diagnosis [17.10843389390131]
Med-LEGO is a training-free framework that enables the seamless integration or updating of a generalist CAD model.
Our experiments demonstrate that Med-LEGO outperforms existing methods in both cross-domain and in-domain medical tasks.
arXiv Detail & Related papers (2025-03-03T04:27:11Z) - Rethinking Foundation Models for Medical Image Classification through a Benchmark Study on MedMNIST [7.017817009055001]
We study the capabilities of foundation models in medical image classification tasks by conducting a benchmark study on the MedMNIST dataset.
We adopt various foundation models ranging from convolutional to Transformer-based models and implement both end-to-end training and linear probing for all classification tasks.
arXiv Detail & Related papers (2025-01-24T18:01:07Z) - ICH-SCNet: Intracerebral Hemorrhage Segmentation and Prognosis Classification Network Using CLIP-guided SAM mechanism [12.469269425813607]
Intracerebral hemorrhage (ICH) is the most fatal subtype of stroke and is characterized by a high incidence of disability.
Existing approaches address these two tasks independently and predominantly focus on imaging data alone.
This paper introduces a multi-task network, ICH-SCNet, designed for both ICH segmentation and prognosis classification.
arXiv Detail & Related papers (2024-11-07T12:34:25Z) - KA$^2$ER: Knowledge Adaptive Amalgamation of ExpeRts for Medical Images Segmentation [5.807887214293438]
We propose an adaptive amalgamation knowledge framework that aims to train a versatile foundation model to handle the joint goals of multiple expert models.
In particular, we first train an nnUNet-based expert model for each task, and reuse the pre-trained SwinUNTER as the target foundation model.
Within the hidden layer, the hierarchical attention mechanisms are designed to achieve adaptive merging of the target model to the hidden layer feature knowledge of all experts.
arXiv Detail & Related papers (2024-10-28T14:49:17Z) - Toward Generalizable Multiple Sclerosis Lesion Segmentation Models [0.0]
This study aims to develop models that generalize across diverse evaluation datasets.
We used all high-quality publicly-available MS lesion segmentation datasets on which we systematically trained a state-of-the-art UNet++ architecture.
arXiv Detail & Related papers (2024-10-25T15:21:54Z) - LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
"Knowledge Decomposition" aims to improve the performance on specific medical tasks.
We propose a novel framework named Low-Rank Knowledge Decomposition (LoRKD)
LoRKD explicitly separates gradients from different tasks by incorporating low-rank expert modules and efficient knowledge separation convolution.
arXiv Detail & Related papers (2024-09-29T03:56:21Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
We present MedS-Bench, a benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts.
MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation.
MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks.
arXiv Detail & Related papers (2024-08-22T17:01:34Z) - SAM-Med3D-MoE: Towards a Non-Forgetting Segment Anything Model via Mixture of Experts for 3D Medical Image Segmentation [36.95030121663565]
Supervised Finetuning (SFT) serves as an effective way to adapt foundation models for task-specific downstream tasks.
We propose SAM-Med3D-MoE, a novel framework that seamlessly integrates task-specific finetuned models with the foundational model.
Our experiments demonstrate the efficacy of SAM-Med3D-MoE, with an average Dice performance increase from 53 to 56.4 on 15 specific classes.
arXiv Detail & Related papers (2024-07-06T03:03:45Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
Multi-task learning (MTL) is a powerful machine learning paradigm designed to leverage shared knowledge across tasks to improve generalization and performance.
We propose an MTL approach at the intersection between task clustering and feature transformation based on a two-phase iterative aggregation of targets and features.
In both phases, a key aspect is to preserve the interpretability of the reduced targets and features through the aggregation with the mean, which is motivated by applications to Earth science.
arXiv Detail & Related papers (2024-06-12T08:30:16Z) - EMERGE: Integrating RAG for Improved Multimodal EHR Predictive Modeling [22.94521527609479]
EMERGE is a Retrieval-Augmented Generation driven framework aimed at enhancing multimodal EHR predictive modeling.
Our approach extracts entities from both time-series data and clinical notes by prompting Large Language Models.
The extracted knowledge is then used to generate task-relevant summaries of patients' health statuses.
arXiv Detail & Related papers (2024-05-27T10:53:15Z) - Unified Multi-modal Diagnostic Framework with Reconstruction Pre-training and Heterogeneity-combat Tuning [14.556686415877602]
We propose a Unified Medical Multi-modal Diagnostic (UMD) framework with tailored pre-training and downstream tuning strategies.
Specifically, we propose the Multi-level Reconstruction Pre-training (MR-Pretrain) strategy, which guides models to capture the semantic information from masked inputs of different modalities.
In particular, TD-Calib fine-tunes the pre-trained model regarding the distribution of downstream datasets, and GM-Coord adjusts the gradient weights according to the dynamic optimization status of different modalities.
arXiv Detail & Related papers (2024-04-09T06:47:44Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - DGM-DR: Domain Generalization with Mutual Information Regularized
Diabetic Retinopathy Classification [40.35834579068518]
Domain shift between training and testing data presents a significant challenge for training general deep learning models.
We introduce a DG method that re-establishes the model objective function as a pretrained model to the medical imaging field.
Our proposed method consistently outperforms the previous state-of-the-art by a margin of 5.25% in average accuracy and a lower standard deviation.
arXiv Detail & Related papers (2023-09-18T11:17:13Z) - MedFMC: A Real-world Dataset and Benchmark For Foundation Model
Adaptation in Medical Image Classification [41.16626194300303]
Foundation models, often pre-trained with large-scale data, have achieved paramount success in jump-starting various vision and language applications.
Recent advances further enable adapting foundation models in downstream tasks efficiently using only a few training samples.
Yet, the application of such learning paradigms in medical image analysis remains scarce due to the shortage of publicly accessible data and benchmarks.
arXiv Detail & Related papers (2023-06-16T01:46:07Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Architecture, Dataset and Model-Scale Agnostic Data-free Meta-Learning [117.48444197402858]
We propose ePisode cUrriculum inveRsion (ECI) during data-free meta training and invErsion calibRation following inner loop (ICFIL) during meta testing.<n>ECI adaptively increases the difficulty level of pseudo episodes according to the real-time feedback of the meta model.<n>We formulate the optimization process of meta training with ECI as an adversarial form in an end-to-end manner.
arXiv Detail & Related papers (2023-03-20T15:10:41Z) - Competence-based Multimodal Curriculum Learning for Medical Report
Generation [98.10763792453925]
We propose a Competence-based Multimodal Curriculum Learning framework ( CMCL) to alleviate the data bias and make best use of available data.
Specifically, CMCL simulates the learning process of radiologists and optimize the model in a step by step manner.
Experiments on the public IU-Xray and MIMIC-CXR datasets show that CMCL can be incorporated into existing models to improve their performance.
arXiv Detail & Related papers (2022-06-24T08:16:01Z) - Incremental Learning Meets Transfer Learning: Application to Multi-site
Prostate MRI Segmentation [16.50535949349874]
We propose a novel multi-site segmentation framework called incremental-transfer learning (ITL)
ITL learns a model from multi-site datasets in an end-to-end sequential fashion.
We show for the first time that leveraging our ITL training scheme is able to alleviate challenging catastrophic problems in incremental learning.
arXiv Detail & Related papers (2022-06-03T02:32:01Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Improving Generalization in Meta-learning via Task Augmentation [69.83677015207527]
We propose two task augmentation methods, including MetaMix and Channel Shuffle.
Both MetaMix and Channel Shuffle outperform state-of-the-art results by a large margin across many datasets.
arXiv Detail & Related papers (2020-07-26T01:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.