Learning Interpretable Hierarchical Dynamical Systems Models from Time Series Data
- URL: http://arxiv.org/abs/2410.04814v1
- Date: Mon, 7 Oct 2024 07:54:53 GMT
- Title: Learning Interpretable Hierarchical Dynamical Systems Models from Time Series Data
- Authors: Manuel Brenner, Elias Weber, Georgia Koppe, Daniel Durstewitz,
- Abstract summary: We show how to efficiently harvest group-level (multi-domain) information while retaining single-domain dynamical characteristics.
In addition to faithful reconstruction of all individual dynamical regimes, our unsupervised methodology discovers common low-dimensional feature spaces.
- Score: 6.3128614613706295
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In science, we are often interested in obtaining a generative model of the underlying system dynamics from observed time series. While powerful methods for dynamical systems reconstruction (DSR) exist when data come from a single domain, how to best integrate data from multiple dynamical regimes and leverage it for generalization is still an open question. This becomes particularly important when individual time series are short, and group-level information may help to fill in for gaps in single-domain data. At the same time, averaging is not an option in DSR, as it will wipe out crucial dynamical properties (e.g., limit cycles in one domain vs. chaos in another). Hence, a framework is needed that enables to efficiently harvest group-level (multi-domain) information while retaining all single-domain dynamical characteristics. Here we provide such a hierarchical approach and showcase it on popular DSR benchmarks, as well as on neuroscientific and medical time series. In addition to faithful reconstruction of all individual dynamical regimes, our unsupervised methodology discovers common low-dimensional feature spaces in which datasets with similar dynamics cluster. The features spanning these spaces were further dynamically highly interpretable, surprisingly in often linear relation to control parameters that govern the dynamics of the underlying system. Finally, we illustrate transfer learning and generalization to new parameter regimes.
Related papers
- DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - Clustering in Dynamic Environments: A Framework for Benchmark Dataset Generation With Heterogeneous Changes [11.56518009058007]
Clustering in dynamic environments is of increasing importance, with broad applications ranging from real-time data analysis and online unsupervised learning to dynamic facility location problems.
meta-heuristics have shown promising effectiveness in static clustering tasks, their application for tracking optimal clustering solutions or robust clustering over time in dynamic environments remains largely underexplored.
This is partly due to a lack of dynamic datasets with diverse, controllable, and realistic dynamic characteristics, hindering systematic performance evaluations of clustering algorithms in various dynamic scenarios.
This deficiency leads to a gap in our understanding and capability to effectively design algorithms for clustering in dynamic environments.
arXiv Detail & Related papers (2024-02-24T05:49:27Z) - Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective [63.60312929416228]
textbftextitAttraos incorporates chaos theory into long-term time series forecasting.
We show that Attraos outperforms various LTSF methods on mainstream datasets and chaotic datasets with only one-twelfth of the parameters compared to PatchTST.
arXiv Detail & Related papers (2024-02-18T05:35:01Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - Integrating Multimodal Data for Joint Generative Modeling of Complex Dynamics [6.848555909346641]
We provide an efficient framework to combine various sources of information for optimal reconstruction.
Our framework is fully textitgenerative, producing, after training, trajectories with the same geometrical and temporal structure as those of the ground truth system.
arXiv Detail & Related papers (2022-12-15T15:21:28Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Variational Predictive Routing with Nested Subjective Timescales [1.6114012813668934]
We present Variational Predictive Routing (PRV) - a neural inference system that organizes latent video features in a temporal hierarchy.
We show that VPR is able to detect event boundaries, disentangletemporal features, adapt to the dynamics hierarchy of the data, and produce accurate time-agnostic rollouts of the future.
arXiv Detail & Related papers (2021-10-21T16:12:59Z) - Learning Continuous System Dynamics from Irregularly-Sampled Partial
Observations [33.63818978256567]
We present LG-ODE, a latent ordinary differential equation generative model for modeling multi-agent dynamic system with known graph structure.
It can simultaneously learn the embedding of high dimensional trajectories and infer continuous latent system dynamics.
Our model employs a novel encoder parameterized by a graph neural network that can infer initial states in an unsupervised way.
arXiv Detail & Related papers (2020-11-08T01:02:22Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
We propose a novel probabilistic sequence model that excels at capturing high variability in time series data.
Our method uses temporal latent variables to capture information about the underlying data pattern.
The efficacy of the proposed method is demonstrated on a range of synthetic and real-world sequential data.
arXiv Detail & Related papers (2020-02-24T19:30:32Z) - Relational State-Space Model for Stochastic Multi-Object Systems [24.234120525358456]
This paper introduces the relational state-space model (R-SSM), a sequential hierarchical latent variable model.
R-SSM makes use of graph neural networks (GNNs) to simulate the joint state transitions of multiple correlated objects.
The utility of R-SSM is empirically evaluated on synthetic and real time-series datasets.
arXiv Detail & Related papers (2020-01-13T03:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.