CAT: Concept-level backdoor ATtacks for Concept Bottleneck Models
- URL: http://arxiv.org/abs/2410.04823v1
- Date: Mon, 7 Oct 2024 08:14:17 GMT
- Title: CAT: Concept-level backdoor ATtacks for Concept Bottleneck Models
- Authors: Songning Lai, Jiayu Yang, Yu Huang, Lijie Hu, Tianlang Xue, Zhangyi Hu, Jiaxu Li, Haicheng Liao, Yutao Yue,
- Abstract summary: Concept Bottleneck Models (CBMs) have emerged as a key approach to improve interpretability by leveraging high-level semantic information.
CBMs are susceptible to security threats, particularly backdoor attacks, which can covertly manipulate model behaviors.
We introduce CAT (Concept-level Backdoor ATtacks), a methodology that leverages the conceptual representations within CBMs to embed triggers during training.
An enhanced attack pattern, CAT+, incorporates a correlation function to systematically select the most effective and stealthy concept triggers.
- Score: 8.236058439213473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the transformative impact of deep learning across multiple domains, the inherent opacity of these models has driven the development of Explainable Artificial Intelligence (XAI). Among these efforts, Concept Bottleneck Models (CBMs) have emerged as a key approach to improve interpretability by leveraging high-level semantic information. However, CBMs, like other machine learning models, are susceptible to security threats, particularly backdoor attacks, which can covertly manipulate model behaviors. Understanding that the community has not yet studied the concept level backdoor attack of CBM, because of "Better the devil you know than the devil you don't know.", we introduce CAT (Concept-level Backdoor ATtacks), a methodology that leverages the conceptual representations within CBMs to embed triggers during training, enabling controlled manipulation of model predictions at inference time. An enhanced attack pattern, CAT+, incorporates a correlation function to systematically select the most effective and stealthy concept triggers, thereby optimizing the attack's impact. Our comprehensive evaluation framework assesses both the attack success rate and stealthiness, demonstrating that CAT and CAT+ maintain high performance on clean data while achieving significant targeted effects on backdoored datasets. This work underscores the potential security risks associated with CBMs and provides a robust testing methodology for future security assessments.
Related papers
- A Practical Trigger-Free Backdoor Attack on Neural Networks [33.426207982772226]
We propose a trigger-free backdoor attack that does not require access to any training data.
Specifically, we design a novel fine-tuning approach that incorporates the concept of malicious data into the concept of the attacker-specified class.
The effectiveness, practicality, and stealthiness of the proposed attack are evaluated on three real-world datasets.
arXiv Detail & Related papers (2024-08-21T08:53:36Z) - PsybORG+: Modeling and Simulation for Detecting Cognitive Biases in Advanced Persistent Threats [10.161416622040722]
This work introduces PsybORG$+$, a multi-agent cybersecurity simulation environment designed to model APT behaviors influenced by cognitive vulnerabilities.
A classification model is built for cognitive vulnerability inference and a simulator is designed for synthetic data generation.
Results show that PsybORG$+$ can effectively model APT attackers with different loss aversion and confirmation bias levels.
arXiv Detail & Related papers (2024-08-02T15:00:58Z) - Mellivora Capensis: A Backdoor-Free Training Framework on the Poisoned Dataset without Auxiliary Data [29.842087372804905]
This paper addresses the challenges of backdoor attack countermeasures in real-world scenarios.
We propose a robust and clean-data-free backdoor defense framework, namely Mellivora Capensis (textttMeCa), which enables the model trainer to train a clean model on the poisoned dataset.
arXiv Detail & Related papers (2024-05-21T12:20:19Z) - The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks [90.52808174102157]
In safety-critical applications such as medical imaging and autonomous driving, it is imperative to maintain both high adversarial robustness to protect against potential adversarial attacks.
A notable knowledge gap remains concerning the uncertainty inherent in adversarially trained models.
This study investigates the uncertainty of deep learning models by examining the performance of conformal prediction (CP) in the context of standard adversarial attacks.
arXiv Detail & Related papers (2024-05-14T18:05:19Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
Multimodal contrastive learning has emerged as a powerful paradigm for building high-quality features.
backdoor attacks subtly embed malicious behaviors within the model during training.
We introduce an innovative token-based localized forgetting training regime.
arXiv Detail & Related papers (2024-03-24T18:33:15Z) - Here's a Free Lunch: Sanitizing Backdoored Models with Model Merge [17.3048898399324]
democratization of pre-trained language models through open-source initiatives has rapidly advanced innovation and expanded access to cutting-edge technologies.
backdoor attacks, where hidden malicious behaviors are triggered by specific inputs, compromising natural language processing (NLP) system integrity and reliability.
This paper suggests that merging a backdoored model with other homogeneous models can significantly remediate backdoor vulnerabilities.
arXiv Detail & Related papers (2024-02-29T16:37:08Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
We study black-box adversarial attacks against deep neural networks (DNNs)
We develop a novel mechanism of adversarial transferability, which is robust to the surrogate biases.
Experiments on benchmark datasets and attacking against real-world API demonstrate the superior attack performance of the proposed method.
arXiv Detail & Related papers (2020-06-15T16:45:27Z) - Stochastic Security: Adversarial Defense Using Long-Run Dynamics of
Energy-Based Models [82.03536496686763]
The vulnerability of deep networks to adversarial attacks is a central problem for deep learning from the perspective of both cognition and security.
We focus on defending naturally-trained classifiers using Markov Chain Monte Carlo (MCMC) sampling with an Energy-Based Model (EBM) for adversarial purification.
Our contributions are 1) an improved method for training EBM's with realistic long-run MCMC samples, 2) Expectation-Over-Transformation (EOT) defense that resolves theoretical ambiguities for defenses, and 3) state-of-the-art adversarial defense for naturally-trained classifiers and competitive defense.
arXiv Detail & Related papers (2020-05-27T17:53:36Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.