論文の概要: Single-shot preparation of hypergraph product codes via dimension jump
- arxiv url: http://arxiv.org/abs/2410.05171v1
- Date: Mon, 7 Oct 2024 16:29:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 23:49:12.266952
- Title: Single-shot preparation of hypergraph product codes via dimension jump
- Title(参考訳): 次元ジャンプによるハイパーグラフ製品符号の単発作成
- Authors: Yifan Hong,
- Abstract要約: 本稿では,空間的オーバーヘッドを$O(sqrtn)$とすることで,一定レートのハイパーグラフ製品コードのコード空間を一定深さで作成するプロトコルを提案する。
測定誤差が存在する場合でも,プロトコルは堅牢であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum error correction is a fundamental primitive of fault-tolerant quantum computing. But in order for error correction to proceed, one must first prepare the codespace of the underlying error-correcting code. A popular method for encoding quantum low-density parity-check codes is transversal initialization, where one begins in a product state and measures a set of stabilizer generators. In the presence of measurement errors however, this procedure is generically not fault-tolerant, and so one typically needs to repeat the measurements many times, resulting in a deep initialization circuit. We present a protocol that prepares the codespace of constant-rate hypergraph product codes in constant depth with $O(\sqrt{n})$ spatial overhead, and we show that the protocol is robust even in the presence of measurement errors. Our construction is inspired by dimension-jumping in topological codes and leverages two properties that arise from the homological product of codes. We provide some improvements to lower the spatial overhead and discuss applications to fault-tolerant architectures.
- Abstract(参考訳): 量子誤り訂正は、フォールトトレラント量子コンピューティングの基本的なプリミティブである。
しかし、エラー訂正が進むためには、まず、下層のエラー訂正コードのコード空間を準備しなければならない。
量子低密度パリティチェック符号を符号化する一般的な方法は、製品状態から開始し、安定化器発生器のセットを測定するトランスバーサル初期化(Transversal initialization)である。
しかし、測定誤差の存在下では、この手順は一般にフォールトトレラントではないため、通常、測定を何度も繰り返す必要があるため、深い初期化回路となる。
本稿では,定数レートのハイパーグラフ製品のコード空間を$O(\sqrt{n})$空間オーバーヘッドで一定深さで生成するプロトコルを提案する。
我々の構成はトポロジカルコードにおける次元跳躍にインスパイアされ、コードのホモロジー積から生じる2つの特性を利用する。
我々は,空間的オーバーヘッドを低減し,フォールトトレラントアーキテクチャへの応用について議論する。
関連論文リスト
- Error Correction in Dynamical Codes [1.6317061277457001]
我々は、一連の測定で定義される量子エラー訂正符号の一般的な枠組みを問う。
本研究では,このプロトコルを用いてエラーシンドロームに関する情報を追跡し,動的コードの距離を決定するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-03-07T02:47:21Z) - Fault-tolerant quantum computation using large spin cat-codes [0.8640652806228457]
本研究では、スピンキャット符号を用いて、大きなスピンキュウトに符号化された量子ビットに基づいて、フォールトトレラントな量子誤り訂正プロトコルを構築する。
我々は、量子制御とライダーベルク封鎖を用いて、ランク保存されたCNOTゲートを含む普遍ゲートセットを生成する方法を示す。
これらの知見は、量子情報処理において、耐障害性、高いしきい値、リソースオーバーヘッドを低減できる可能性を持つ、大きなスピンで量子ビットを符号化する方法を舗装している。
論文 参考訳(メタデータ) (2024-01-08T22:56:05Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
単一マルチレベルキューディットに実装された安定化器量子エラー訂正符号について論じる。
これらのコードは、quditの特定の物理的エラーに合わせてカスタマイズすることができ、効果的にそれらを抑制することができる。
分子スピン四重項上のフォールトトレラントな実装を実証し、線形キューディットサイズのみの成長を伴うほぼ指数関数的な誤差抑制を示す。
論文 参考訳(メタデータ) (2023-07-20T10:51:23Z) - Partial Syndrome Measurement for Hypergraph Product Codes [0.0]
ハイパーグラフ製品コードは、一定のオーバーヘッドでフォールトトレラント量子計算を達成するための有望な方法である。
この非局所性を実装することによる影響を軽減することを目的とした耐故障性スキームを導入する。
その結果, 発生器の定数が一定でない場合でも, 論理誤差率が指数関数的に抑制されることが判明した。
論文 参考訳(メタデータ) (2023-06-29T17:23:20Z) - Measurement-free fault-tolerant logical zero-state encoding of the
distance-three nine-qubit surface code in a one-dimensional qubit array [0.0]
距離3, 9量子曲面符号の効率的な符号化法を提案し, その耐故障性を示す。
超伝導量子コンピュータを用いた表面符号の論理零状態符号化を実験により実証した。
我々は,この大規模コードのフォールトトレラントな符号化が適切なエラー検出によって達成できることを数値的に示す。
論文 参考訳(メタデータ) (2023-03-30T08:13:56Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
非クリフォードゲートのこのオーバーヘッドを低減するためのプロトコルを導入する。
予備的な結果は、より広い距離で高品質な忠実さを示唆している。
論文 参考訳(メタデータ) (2022-11-18T06:03:10Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
テレポーテーションに基づく誤り訂正回路を用いて、回転対称符号の誤り訂正能力を解析する。
マイクロ波光学における現在達成可能な測定効率により, ボソニック回転符号の破壊ポテンシャルは著しく低下することが判明した。
論文 参考訳(メタデータ) (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
耐故障性ウェイト4パリティチェック測定方式を実験的に実証した。
フラグ条件パリティ測定の単発忠実度は93.2(2)%である。
このスキームは、安定化器量子誤り訂正プロトコルの幅広いクラスにおいて必須な構成要素である。
論文 参考訳(メタデータ) (2021-07-13T20:08:04Z) - Cellular automaton decoders for topological quantum codes with noisy
measurements and beyond [68.8204255655161]
本稿では,トポロジカル量子符号を超える幅広い符号に適用可能なセルオートマトン,スイープルールに基づく誤り訂正手法を提案する。
単純化のために, 境界付きロンボックドデカヘドラル格子上の3次元トーリック符号に着目し, 得られた局所デコーダの誤差しきい値がゼロでないことを証明した。
この誤差補正法は, 測定誤差に対して極めて堅牢であり, また, 格子モデルやノイズモデルの詳細に敏感であることがわかった。
論文 参考訳(メタデータ) (2020-04-15T18:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。