論文の概要: Constructing and Masking Preference Profile with LLMs for Filtering Discomforting Recommendation
- arxiv url: http://arxiv.org/abs/2410.05411v1
- Date: Mon, 07 Oct 2024 18:23:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 14:01:49.797406
- Title: Constructing and Masking Preference Profile with LLMs for Filtering Discomforting Recommendation
- Title(参考訳): 不快なレコメンデーションをフィルタリングするLLMによる構成とマスキングの選好プロファイル
- Authors: Jiahao Liu, YiYang Shao, Peng Zhang, Dongsheng Li, Hansu Gu, Chao Chen, Longzhi Du, Tun Lu, Ning Gu,
- Abstract要約: DiscomfortFilterは不快なレコメンデーションをフィルタリングするツールだ。
DiscomfortFilterは、LLM(Large Language Model)ベースのツールであるDiscomfortFilterをベースにしている。
参加者24名による1週間のユーザスタディでは、DiscomfortFilterの有効性が示された。
- 参考スコア(独自算出の注目度): 31.416850979104407
- License:
- Abstract: Personalized algorithms can inadvertently expose users to discomforting recommendations, potentially triggering negative consequences. The subjectivity of discomfort and the black-box nature of these algorithms make it challenging to effectively identify and filter such content. To address this, we first conducted a formative study to understand users' practices and expectations regarding discomforting recommendation filtering. Then, we designed a Large Language Model (LLM)-based tool named DiscomfortFilter, which constructs an editable preference profile for a user and helps the user express filtering needs through conversation to mask discomforting preferences within the profile. Based on the edited profile, DiscomfortFilter facilitates the discomforting recommendations filtering in a plug-and-play manner, maintaining flexibility and transparency. The constructed preference profile improves LLM reasoning and simplifies user alignment, enabling a 3.8B open-source LLM to rival top commercial models in an offline proxy task. A one-week user study with 24 participants demonstrated the effectiveness of DiscomfortFilter, while also highlighting its potential impact on platform recommendation outcomes. We conclude by discussing the ongoing challenges, highlighting its relevance to broader research, assessing stakeholder impact, and outlining future research directions.
- Abstract(参考訳): パーソナライズされたアルゴリズムは、ユーザーが不愉快なレコメンデーションに不注意にさらし、ネガティブな結果を引き起こす可能性がある。
不快感の主観性とこれらのアルゴリズムのブラックボックスの性質は、そのようなコンテンツを効果的に識別し、フィルタリングすることを困難にしている。
そこで我々はまず,不愉快なレコメンデーションフィルタリングに関するユーザの実践と期待を理解するためのフォーマティブな研究を行った。
そこで我々はDistfortFilterという,LLM(Large Language Model)ベースのツールを設計した。これはユーザが編集可能な好みプロファイルを構築し,ユーザが会話を通じてニーズをフィルタリングし,プロファイル内の不快な好みを隠蔽するのに役立つ。
DiscomfortFilterは、編集されたプロファイルに基づいて、プラグアンドプレイで不快なレコメンデーションフィルタリングを促進し、柔軟性と透明性を維持する。
構築された好みプロファイルは、LCM推論を改善し、ユーザーアライメントを簡素化し、3.8BのオープンソースLCMがオフラインプロキシタスクで上位の商用モデルと競合できるようにする。
24人の参加者による1週間のユーザ調査では、DiscomfortFilterの有効性が実証された。
我々は、現在進行中の課題について議論し、より広範な研究との関係を強調し、ステークホルダーへの影響を評価し、今後の研究方向性を概説することで結論付けます。
関連論文リスト
- Large Language Models as Conversational Movie Recommenders: A User Study [3.3636849604467]
大規模言語モデル(LLM)は、強い推薦性を提供するが、全体的なパーソナライゼーション、多様性、ユーザ信頼は欠如している。
LLMは、あまり知られていない映画やニッチ映画を推薦する能力を高めている。
論文 参考訳(メタデータ) (2024-04-29T20:17:06Z) - Aligning LLM Agents by Learning Latent Preference from User Edits [23.235995078727658]
本研究では,エージェントの出力に対するユーザ編集に基づいて,言語エージェントの対話的学習について検討する。
本稿では,履歴編集データに基づいてユーザの潜伏傾向を推定する学習フレームワーク PreLUDE を提案する。
本稿では,要約とメール作成という2つの対話型環境を導入し,GPT-4シミュレーションユーザを用いて評価を行う。
論文 参考訳(メタデータ) (2024-04-23T17:57:47Z) - BlendFilter: Advancing Retrieval-Augmented Large Language Models via Query Generation Blending and Knowledge Filtering [58.403898834018285]
BlendFilterは、知識フィルタリングと組み合わせたクエリ生成を統合することで、検索強化された大規模言語モデルを高める新しいアプローチである。
我々は3つのオープンドメイン質問応答ベンチマークで広範な実験を行い、我々の革新的なBlendFilterが最先端のベースラインをはるかに上回っていることを明らかにした。
論文 参考訳(メタデータ) (2024-02-16T23:28:02Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) は、同一のプロンプトと関連するプロンプトの両方から、より多く、あまり好まれない応答を識別するように設計されている。
RPOは、大きな言語モデルをユーザの好みに合わせて調整し、トレーニングプロセスにおける適応性を改善する優れた能力を示している。
論文 参考訳(メタデータ) (2024-02-12T22:47:57Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
ゼロショットプロンプト最適化により,Large Language Models (LLM) の算術的推論能力を向上させることを目的とする。
このような最適化では、以前見過ごされたクエリ依存の目的を特定します。
本稿では、オフライン逆強化学習を利用して、実演データから洞察を引き出すPrompt-OIRLを紹介する。
論文 参考訳(メタデータ) (2023-09-13T01:12:52Z) - Explainable Active Learning for Preference Elicitation [0.0]
我々は、最小限のユーザ労力で情報取得を最大化することを目的として、この問題を解決するためにアクティブラーニング(AL)を採用している。
ALは、大きなラベルのない集合から情報的データを選択して、それらをラベル付けするオラクルを問い合わせる。
ベースとなる機械学習(ML)モデルを更新するために、ユーザからのフィードバック(提示された項目に関するシステムの説明のために)を情報的なサンプルから収集する。
論文 参考訳(メタデータ) (2023-09-01T09:22:33Z) - A Critical Analysis of Classifier Selection in Learned Bloom Filters [0.3359875577705538]
フィルタ構築に使用されるデータの"複雑さ"は、そのパフォーマンスに大きく影響する可能性がある。
本稿では,学習ブルームフィルタの設計,解析,実装のための新しい手法を提案する。
提案手法とサポートソフトウェアは有効かつ有用であることを示す実験結果が得られた。
論文 参考訳(メタデータ) (2022-11-28T17:17:18Z) - Broad Recommender System: An Efficient Nonlinear Collaborative Filtering
Approach [56.12815715932561]
我々はBroad Collaborative Filtering (BroadCF)と呼ばれる新しい広帯域リコメンデータシステムを提案する。
深層ニューラルネットワーク(DNN)の代わりに、ユーザとアイテム間の複雑な非線形関係を学習するためのマッピング機能として、Broad Learning System(BLS)が使用されている。
7つのベンチマークデータセットで実施された大規模な実験により、提案したBroadCFアルゴリズムの有効性が確認された。
論文 参考訳(メタデータ) (2022-04-20T01:25:08Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
本稿では、予期せぬことを推奨プロセスに組み込んだ、新しいPersonalized Unexpected Recommender System(PURS)モデルについて述べる。
3つの実世界のデータセットに対する大規模なオフライン実験は、提案されたPURSモデルが最先端のベースラインアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2021-06-05T01:33:21Z) - Echo Chambers in Collaborative Filtering Based Recommendation Systems [1.5140493624413542]
我々は、MovieLensデータセットのユーザに対して協調フィルタリングアルゴリズムによって与えられるレコメンデーションをシミュレートする。
システム生成レコメンデーションの長期曝露は、コンテンツの多様性を著しく低下させる。
我々の研究は、これらのエコーチャンバが確立すれば、個々のユーザが自分の評価ベクトルのみを操作することで、突破するのは難しいことを示唆している。
論文 参考訳(メタデータ) (2020-11-08T02:35:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。