論文の概要: Structural Constraints for Physics-augmented Learning
- arxiv url: http://arxiv.org/abs/2410.05507v1
- Date: Mon, 7 Oct 2024 21:25:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 18:18:04.997511
- Title: Structural Constraints for Physics-augmented Learning
- Title(参考訳): 物理増進学習のための構造制約
- Authors: Simon Kuang, Xinfan Lin,
- Abstract要約: 物理が間違っているとき、物理学のインフォームド・機械学習は物理のミスフォームド・機械学習になる。
本稿では,ハイブリッドモデル(物理モデルとブラックボックスモデル)が物理モデルを再現できないという整合性を主張するために使用できる2つの基準を提案する。
小信号線形化により近似した非線形機械系のサンプルについて実演する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When the physics is wrong, physics-informed machine learning becomes physics-misinformed machine learning. A powerful black-box model should not be able to conceal misconceived physics. We propose two criteria that can be used to assert integrity that a hybrid (physics plus black-box) model: 0) the black-box model should be unable to replicate the physical model, and 1) any best-fit hybrid model has the same physical parameter as a best-fit standalone physics model. We demonstrate them for a sample nonlinear mechanical system approximated by its small-signal linearization.
- Abstract(参考訳): 物理が間違っている場合、物理インフォームド・機械学習は物理ミスフォームド・機械学習となる。
強力なブラックボックスモデルは、誤解された物理を隠蔽することができない。
ハイブリッド(物理+ブラックボックス)モデルが整合性を主張するために使用できる2つの基準を提案する。
0) ブラックボックスモデルは物理モデルを複製することができず、
1) 任意の最適ハイブリッドモデルは、最良のスタンドアロン物理モデルと同じ物理パラメータを持つ。
小信号線形化により近似した非線形機械系のサンプルについて実演する。
関連論文リスト
- PETAL: Physics Emulation Through Averaged Linearizations for Solving
Inverse Problems [0.6039786064227648]
逆問題では、オブザーバブルが与えられた関心のシグナルを回復するタスクが記述される。
本稿では,様々な基準点を囲む前方モデルの線形化をモデル自体に組み込む,単純な学習重み付き平均モデルを提案する。
論文 参考訳(メタデータ) (2023-05-18T15:50:54Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
グラフニューラルネットワーク(GNN)は、物理力学を学習するための一般的なツールとなっている。
物理法則は、モデル一般化に必須な帰納バイアスである対称性に従属する。
本モデルは,RigidFall上でのPhysylonと2倍低ロールアウトMSEの8つのシナリオにおいて,平均3%以上の接触予測精度の向上を実現している。
論文 参考訳(メタデータ) (2022-10-13T10:00:30Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Dynamic Visual Reasoning by Learning Differentiable Physics Models from
Video and Language [92.7638697243969]
視覚概念を協調的に学習し,映像や言語から物体の物理モデルを推定する統合フレームワークを提案する。
これは視覚認識モジュール、概念学習モジュール、微分可能な物理エンジンの3つのコンポーネントをシームレスに統合することで実現される。
論文 参考訳(メタデータ) (2021-10-28T17:59:13Z) - Physics-informed regularization and structure preservation for learning
stable reduced models from data with operator inference [0.0]
演算子推論は、高次元物理系の軌道から非線形項を持つ低次元力学系モデルを学習する。
2次モデルに対する安定性バイアスを誘導する演算子推論のための正則化器を提案する。
構造を保存するためのモデル制約を強制する演算子推論の定式化を提案する。
論文 参考訳(メタデータ) (2021-07-06T13:15:54Z) - PhysiNet: A Combination of Physics-based Model and Neural Network Model
for Digital Twins [0.5076419064097732]
本稿では,物理モデルとニューラルネットワークモデルを組み合わせて,システムのライフサイクル全体の予測精度を向上させるモデルを提案する。
実験により、提案したハイブリッドモデルは、物理ベースモデルとニューラルネットワークモデルの両方より優れていた。
論文 参考訳(メタデータ) (2021-06-28T15:13:16Z) - ForceNet: A Graph Neural Network for Large-Scale Quantum Calculations [86.41674945012369]
スケーラブルで表現力のあるグラフニューラルネットワークモデルであるForceNetを開発し、原子力を近似します。
提案したForceNetは、最先端の物理ベースのGNNよりも正確に原子力を予測することができる。
論文 参考訳(メタデータ) (2021-03-02T03:09:06Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Differentiable Physics Models for Real-world Offline Model-based
Reinforcement Learning [34.558299591341]
モデルに基づく強化学習の制限は、学習モデルにおけるエラーの活用である。
物理モデルを用いたモデルは,機械構造が知られている場合,高容量関数近似器と比較して有益であることを示す。
論文 参考訳(メタデータ) (2020-11-03T14:37:53Z) - Learning Unknown Physics of non-Newtonian Fluids [56.9557910899739]
我々は,2つの非ニュートン系の粘度モデルを学ぶために,物理インフォームドニューラルネットワーク(PINN)法を拡張した。
PINNで推論された粘度モデルは、絶対値が大きいが、せん断速度が0に近い場合の実験的モデルと一致する。
PINN法を用いて,境界条件のみを用いて非ニュートン流体の運動量保存方程式を解く。
論文 参考訳(メタデータ) (2020-08-26T20:41:36Z) - Integrating Machine Learning with Physics-Based Modeling [17.392391163553334]
この記事では、幅広い関心事の1つに焦点を当てる。 機械学習と物理に基づくモデリングをどのように統合できるのか?
機械学習に基づく物理モデルを開発する上で最も重要な2つの課題について論じる。
最終的には、この統合がどこに導くのか、そして機械学習が科学的モデリングにうまく統合された後、新たなフロンティアがどこにあるのか、という一般的な議論で終わります。
論文 参考訳(メタデータ) (2020-06-04T02:35:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。