論文の概要: When Graph Neural Networks Meet Dynamic Mode Decomposition
- arxiv url: http://arxiv.org/abs/2410.05593v1
- Date: Tue, 8 Oct 2024 01:09:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 17:48:36.336588
- Title: When Graph Neural Networks Meet Dynamic Mode Decomposition
- Title(参考訳): グラフニューラルネットワークが動的モード分解と出会うとき
- Authors: Dai Shi, Lequan Lin, Andi Han, Zhiyong Wang, Yi Guo, Junbin Gao,
- Abstract要約: DMDアルゴリズムによって提供される低ランク固有関数を効果的に活用するMDD-GNNモデル群を紹介する。
我々の研究は、GNNを通して高度な動的システム解析ツールを適用するための道筋をたどっている。
- 参考スコア(独自算出の注目度): 34.16727363891593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have emerged as fundamental tools for a wide range of prediction tasks on graph-structured data. Recent studies have drawn analogies between GNN feature propagation and diffusion processes, which can be interpreted as dynamical systems. In this paper, we delve deeper into this perspective by connecting the dynamics in GNNs to modern Koopman theory and its numerical method, Dynamic Mode Decomposition (DMD). We illustrate how DMD can estimate a low-rank, finite-dimensional linear operator based on multiple states of the system, effectively approximating potential nonlinear interactions between nodes in the graph. This approach allows us to capture complex dynamics within the graph accurately and efficiently. We theoretically establish a connection between the DMD-estimated operator and the original dynamic operator between system states. Building upon this foundation, we introduce a family of DMD-GNN models that effectively leverage the low-rank eigenfunctions provided by the DMD algorithm. We further discuss the potential of enhancing our approach by incorporating domain-specific constraints such as symmetry into the DMD computation, allowing the corresponding GNN models to respect known physical properties of the underlying system. Our work paves the path for applying advanced dynamical system analysis tools via GNNs. We validate our approach through extensive experiments on various learning tasks, including directed graphs, large-scale graphs, long-range interactions, and spatial-temporal graphs. We also empirically verify that our proposed models can serve as powerful encoders for link prediction tasks. The results demonstrate that our DMD-enhanced GNNs achieve state-of-the-art performance, highlighting the effectiveness of integrating DMD into GNN frameworks.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データに対する幅広い予測タスクの基本的なツールとして登場した。
最近の研究は、GNNの特徴伝播と拡散過程の類似性を引き合いに出し、力学系として解釈できる。
本稿では、GNNの力学と現代のクープマン理論と、その数値解法である動的モード分解(DMD)を結びつけることにより、この視点を深く掘り下げる。
DMDがシステムの複数の状態に基づいて低ランクな有限次元線形作用素を推定し、グラフ内のノード間の潜在的な非線形相互作用を効果的に近似する方法について述べる。
このアプローチにより、グラフ内の複雑なダイナミクスを正確かつ効率的にキャプチャできる。
理論的には、DMD推定演算子とシステム状態間の元の動的演算子との接続を確立する。
この基礎の上に構築されたDMD-GNNモデルのファミリーを導入し、DMDアルゴリズムによって提供される低ランク固有関数を効果的に活用する。
さらに、DMD計算に対称性などのドメイン固有の制約を組み込むことにより、我々のアプローチを強化する可能性について論じ、対応するGNNモデルが基盤システムの既知の物理的特性を尊重することを可能にする。
我々の研究は、GNNを通して高度な動的システム解析ツールを適用するための道筋をたどっている。
提案手法は,有向グラフ,大規模グラフ,長距離相互作用,空間時間グラフなど,様々な学習課題に関する広範な実験を通じて検証される。
また,提案モデルがリンク予測タスクの強力なエンコーダとして機能することを実証的に検証した。
その結果, DMD を拡張した GNN が最先端性能を実現し, DMD を GNN フレームワークに組み込むことの有効性が示された。
関連論文リスト
- A survey of dynamic graph neural networks [26.162035361191805]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから効果的にマイニングし学習するための強力なツールとして登場した。
本稿では,基本的な概念,鍵となる技術,そして最先端の動的GNNモデルについて概観する。
論文 参考訳(メタデータ) (2024-04-28T15:07:48Z) - Exploring Time Granularity on Temporal Graphs for Dynamic Link
Prediction in Real-world Networks [0.48346848229502226]
動的グラフニューラルネットワーク(DGNN)は、動的グラフ構造化データを処理するための主要なアプローチである。
本稿では,DGNNを訓練する際の時間粒度が動的グラフに与える影響について,広範な実験を通して検討する。
論文 参考訳(メタデータ) (2023-11-21T00:34:53Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network [7.876789380671075]
スパースDAGの学習を目的としたスコアに基づくグラフニューラルネットワーク手法を提案する。
グラフニューラルネットワークを用いた手法は,動的ベイジアンネットワーク推論を用いた他の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2023-01-28T02:49:13Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
下流予測タスクによって誘導されるfMRIデータの最適時間変化依存性構造を学習する新しい手法であるDynDepNetを提案する。
実世界のfMRIデータセットの実験は、性別分類のタスクにおいて、DynDepNetが最先端の結果を達成することを実証している。
論文 参考訳(メタデータ) (2022-09-27T16:32:11Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
内在的なダイナミクスを持つ生物学的スパイキングニューロンは、脳の強力な表現力と学習能力を持つ。
ユークリッド空間タスクを処理するためのスパイクニューラルネットワーク(SNN)の最近の進歩にもかかわらず、非ユークリッド空間データの処理においてSNNを活用することは依然として困難である。
本稿では,グラフ学習のためのSNNの直接学習を可能にする,一般的なスパイクに基づくモデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:20:16Z) - Continuous-Depth Neural Models for Dynamic Graph Prediction [16.89981677708299]
連続深度グラフニューラルネットワーク(GNN)の枠組みを紹介する。
ニューラルグラフ微分方程式(ニューラルグラフ微分方程式)は、GNNに対抗して形式化される。
その結果、遺伝的制御ネットワークにおけるトラフィック予測や予測など、アプリケーション全体にわたって提案されたモデルの有効性が証明された。
論文 参考訳(メタデータ) (2021-06-22T07:30:35Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。