Generalized Sparse Additive Model with Unknown Link Function
- URL: http://arxiv.org/abs/2410.06012v2
- Date: Fri, 11 Oct 2024 08:48:28 GMT
- Title: Generalized Sparse Additive Model with Unknown Link Function
- Authors: Peipei Yuan, Xinge You, Hong Chen, Xuelin Zhang, Qinmu Peng,
- Abstract summary: We propose a new sparse additive model, named generalized sparse additive model with unknown link function (GSAMUL)
The component functions are estimated by B-spline basis and the unknown link function is estimated by a multi-layer perceptron (MLP) network.
In applications, experimental evaluations on both synthetic and real world data sets consistently validate the effectiveness of the proposed approach.
- Score: 19.807823040041896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalized additive models (GAM) have been successfully applied to high dimensional data analysis. However, most existing methods cannot simultaneously estimate the link function, the component functions and the variable interaction. To alleviate this problem, we propose a new sparse additive model, named generalized sparse additive model with unknown link function (GSAMUL), in which the component functions are estimated by B-spline basis and the unknown link function is estimated by a multi-layer perceptron (MLP) network. Furthermore, $\ell_{2,1}$-norm regularizer is used for variable selection. The proposed GSAMUL can realize both variable selection and hidden interaction. We integrate this estimation into a bilevel optimization problem, where the data is split into training set and validation set. In theory, we provide the guarantees about the convergence of the approximate procedure. In applications, experimental evaluations on both synthetic and real world data sets consistently validate the effectiveness of the proposed approach.
Related papers
- Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
Multi-task learning (MTL) is a powerful machine learning paradigm designed to leverage shared knowledge across tasks to improve generalization and performance.
We propose an MTL approach at the intersection between task clustering and feature transformation based on a two-phase iterative aggregation of targets and features.
In both phases, a key aspect is to preserve the interpretability of the reduced targets and features through the aggregation with the mean, which is motivated by applications to Earth science.
arXiv Detail & Related papers (2024-06-12T08:30:16Z) - RUMBoost: Gradient Boosted Random Utility Models [0.0]
The RUMBoost model combines the interpretability and behavioural robustness of Random Utility Models (RUMs) with the generalisation and predictive ability of deep learning methods.
We demonstrate the potential of the RUMBoost model compared to various ML and Random Utility benchmark models for revealed preference mode choice data from London.
arXiv Detail & Related papers (2024-01-22T13:54:26Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
We propose a novel model selection algorithm based on a penalized maximum likelihood estimator (PMLE) for functional hiddenstatistical models (f-HD)
The algorithm is based on iterative optimisation and uses an adaptive least absolute shrinkage and selector operator (GMSOLAS) penalty function, wherein the weights are obtained by the unpenalised f-HD maximum-likelihood estimators.
arXiv Detail & Related papers (2022-08-10T19:17:45Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - DDAC-SpAM: A Distributed Algorithm for Fitting High-dimensional Sparse
Additive Models with Feature Division and Decorrelation [16.232378903482143]
We propose a new distributed statistical learning algorithm, DDAC-SpAM, which divides the features under a high-dimensional sparse additive model.
The effectiveness and efficiency of the proposed algorithm are demonstrated through theoretical analysis and empirical results on both synthetic and real data.
Our approach provides a practical solution for fitting sparse additive models, with promising applications in a wide range of domains.
arXiv Detail & Related papers (2022-05-16T18:31:03Z) - A Lagrangian Duality Approach to Active Learning [119.36233726867992]
We consider the batch active learning problem, where only a subset of the training data is labeled.
We formulate the learning problem using constrained optimization, where each constraint bounds the performance of the model on labeled samples.
We show, via numerical experiments, that our proposed approach performs similarly to or better than state-of-the-art active learning methods.
arXiv Detail & Related papers (2022-02-08T19:18:49Z) - Improving the quality of generative models through Smirnov
transformation [1.3492000366723798]
We propose a novel activation function to be used as output of the generator agent.
It is based on the Smirnov probabilistic transformation and it is specifically designed to improve the quality of the generated data.
arXiv Detail & Related papers (2021-10-29T17:01:06Z) - Quantum-Assisted Feature Selection for Vehicle Price Prediction Modeling [0.0]
We study metrics for encoding the search as a binary model, such as Generalized Mean Information Coefficient and Pearson Correlation Coefficient.
We achieve accuracy scores of 0.9 for finding optimal subsets on synthetic data using a new metric that we define.
Our findings show that by leveraging quantum-assisted routines we find solutions that increase the quality of predictive model output.
arXiv Detail & Related papers (2021-04-08T20:48:44Z) - Information-theoretic Feature Selection via Tensor Decomposition and
Submodularity [38.05393186002834]
We introduce a low-rank tensor model of the joint PMF of all variables and indirect targeting as a way of mitigating complexity and maximizing the classification performance for a given number of features.
By indirectly aiming to predict the latent variable of the naive Bayes model instead of the original target variable, it is possible to formulate the feature selection problem as of a monotone submodular function subject to a cardinality constraint.
arXiv Detail & Related papers (2020-10-30T10:36:46Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.