論文の概要: A New Architecture for Neural Enhanced Multiobject Tracking
- arxiv url: http://arxiv.org/abs/2410.06294v1
- Date: Tue, 8 Oct 2024 18:53:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 10:11:01.930599
- Title: A New Architecture for Neural Enhanced Multiobject Tracking
- Title(参考訳): ニューラル強化多対象追跡のための新しいアーキテクチャ
- Authors: Shaoxiu Wei, Mingchao Liang, Florian Meyer,
- Abstract要約: マルチオブジェクトトラッキングは、ロボット工学、自律運転、海洋監視において重要なタスクである。
MOTの伝統的な研究はモデルベースであり、逐次ベイズ推定の枠組みでアルゴリズムを確立することを目的としている。
最近の手法は完全なデータ駆動であり、ニューラルネットワークのトレーニングに依存している。
本稿では,Neural-enhanced belief propagation (NEBP)と呼ばれるハイブリッドモデルとデータ駆動方式を最近導入した。
- 参考スコア(独自算出の注目度): 4.7752948351582605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiobject tracking (MOT) is an important task in robotics, autonomous driving, and maritime surveillance. Traditional work on MOT is model-based and aims to establish algorithms in the framework of sequential Bayesian estimation. More recent methods are fully data-driven and rely on the training of neural networks. The two approaches have demonstrated advantages in certain scenarios. In particular, in problems where plenty of labeled data for the training of neural networks is available, data-driven MOT tends to have advantages compared to traditional methods. A natural thought is whether a general and efficient framework can integrate the two approaches. This paper advances a recently introduced hybrid model-based and data-driven method called neural-enhanced belief propagation (NEBP). Compared to existing work on NEBP for MOT, it introduces a novel neural architecture that can improve data association and new object initialization, two critical aspects of MOT. The proposed tracking method is leading the nuScenes LiDAR-only tracking challenge at the time of submission of this paper.
- Abstract(参考訳): マルチオブジェクトトラッキング(MOT)は、ロボット工学、自律運転、海洋監視において重要なタスクである。
MOTの伝統的な研究はモデルベースであり、逐次ベイズ推定の枠組みでアルゴリズムを確立することを目的としている。
最近の手法は完全なデータ駆動であり、ニューラルネットワークのトレーニングに依存している。
この2つのアプローチは、特定のシナリオにおいて利点を示してきた。
特に、ニューラルネットワークのトレーニングのためのラベル付きデータが多数存在する問題では、データ駆動型MOTは従来の手法に比べて利点がある傾向があります。
自然な考えは、汎用的で効率的なフレームワークが2つのアプローチを統合することができるかどうかである。
本稿では,Neural-enhanced belief propagation (NEBP)と呼ばれるハイブリッドモデルとデータ駆動方式を最近導入した。
NEBP for MOTの既存の研究と比較すると、MOTの2つの重要な側面である、データアソシエーションと新しいオブジェクト初期化を改善する新しいニューラルアーキテクチャが導入されている。
提案手法は,本論文提出時のnuScenes LiDARのみの追跡課題を導いたものである。
関連論文リスト
- Meta-Sparsity: Learning Optimal Sparse Structures in Multi-task Networks through Meta-learning [4.462334751640166]
Meta-sparsityは、ディープニューラルネットワーク(DNN)がマルチタスク学習環境で最適なスパース共有構造を生成することを可能にする、モデルのスパーシティを学習するためのフレームワークである。
Model Agnostic Meta-Learning (MAML)に触発され、マルチタスクシナリオにおける共有パラメータと最適なスパースパラメータの学習に重点を置いている。
メタスパーシティーの有効性は、2つのデータセットに対する広範な実験によって厳格に評価されている。
論文 参考訳(メタデータ) (2025-01-21T13:25:32Z) - Learning a Neural Association Network for Self-supervised Multi-Object Tracking [34.07776597698471]
本稿では,多目的追跡のためのデータアソシエーションを自己管理的に学習するための新しいフレームワークを提案する。
実世界のシナリオでは、オブジェクトの動きが通常マルコフプロセスで表現できるという事実により、我々は、トラッキングのための検出を関連付けるためにニューラルネットワークをトレーニングする新しい期待(EM)アルゴリズムを提案する。
我々は,挑戦的なMOT17とMOT20データセットに対するアプローチを評価し,自己教師付きトラッカーと比較して最先端の結果を得る。
論文 参考訳(メタデータ) (2024-11-18T12:22:29Z) - NNsight and NDIF: Democratizing Access to Open-Weight Foundation Model Internals [58.83169560132308]
NNsightとNDIFは、非常に大きなニューラルネットワークの科学的研究を可能にするために、タンデムで機能する技術である。
NNsightは、遅延リモート実行を導入するためにPyTorchを拡張したオープンソースのシステムである。
NDIFは、NNsightリクエストを実行するスケーラブルな推論サービスで、GPUリソースと事前トレーニングされたモデルを共有することができる。
論文 参考訳(メタデータ) (2024-07-18T17:59:01Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Neural Maximum A Posteriori Estimation on Unpaired Data for Motion
Deblurring [87.97330195531029]
本稿では、ニューラルネットワークをトレーニングし、失明したデータから視覚情報や鋭いコンテンツを復元するためのニューラルネットワークの最大Aポストエリオリ(NeurMAP)推定フレームワークを提案する。
提案されたNeurMAPは、既存のデブロアリングニューラルネットワークに対するアプローチであり、未使用データセット上のイメージデブロアリングネットワークのトレーニングを可能にする最初のフレームワークである。
論文 参考訳(メタデータ) (2022-04-26T08:09:47Z) - Neural Enhanced Belief Propagation for Data Assocation in Multiobject
Tracking [8.228150100178983]
マルチオブジェクトトラッキング(MOT)は、自律ナビゲーションや応用海洋科学などの分野における新しいサービスとアプリケーションを作成する。
信念伝播(BP)はベイジアンMOTの最先端の手法であるが、統計モデルと事前処理されたセンサ測定に完全に依存している。
我々は,モデルベースおよびデータ駆動型MOTのハイブリッド手法を構築し,提案手法は生センサデータから得られた情報によってBPを補完する。
nuScenes 自律走行データセット上でのMOTに対するNEBP手法の性能評価を行い,その性能を実証する。
論文 参考訳(メタデータ) (2022-03-17T00:12:48Z) - Model-Based Machine Learning for Communications [110.47840878388453]
モデルベースのアルゴリズムと機械学習をハイレベルな視点で組み合わせるための既存の戦略を見直します。
通信受信機の基本的なタスクの一つであるシンボル検出に注目する。
論文 参考訳(メタデータ) (2021-01-12T19:55:34Z) - TrackMPNN: A Message Passing Graph Neural Architecture for Multi-Object
Tracking [8.791710193028903]
本研究は,グラフに基づくデータ構造を用いて問題をモデル化する多目的追跡(MOT)への多くの従来のアプローチに従う。
複数のタイムステップにまたがるデータ関連問題を表す動的無方向性グラフに基づくフレームワークを作成する。
また、メモリ効率が高く、リアルタイムなオンラインアルゴリズムを作成するために対処する必要がある計算問題に対するソリューションと提案も提供します。
論文 参考訳(メタデータ) (2021-01-11T21:52:25Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Pedestrian Trajectory Prediction with Convolutional Neural Networks [0.3787359747190393]
本稿では,新しい2次元畳み込みモデルを導入し,歩行者軌道予測への新たなアプローチを提案する。
この新モデルはリカレントモデルより優れており、ETHとTrajNetデータセットの最先端の結果が得られる。
また,歩行者の位置と強力なデータ拡張手法を効果的に表現するシステムを提案する。
論文 参考訳(メタデータ) (2020-10-12T15:51:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。