A New Architecture for Neural Enhanced Multiobject Tracking
- URL: http://arxiv.org/abs/2410.06294v1
- Date: Tue, 8 Oct 2024 18:53:45 GMT
- Title: A New Architecture for Neural Enhanced Multiobject Tracking
- Authors: Shaoxiu Wei, Mingchao Liang, Florian Meyer,
- Abstract summary: Multiobject tracking is an important task in robotics, autonomous driving, and maritime surveillance.
Traditional work on MOT is model-based and aims to establish algorithms in the framework of sequential Bayesian estimation.
More recent methods are fully data-driven and rely on the training of neural networks.
This paper advances a recently introduced hybrid model-based and data-driven method called neural-enhanced belief propagation (NEBP)
- Score: 4.7752948351582605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiobject tracking (MOT) is an important task in robotics, autonomous driving, and maritime surveillance. Traditional work on MOT is model-based and aims to establish algorithms in the framework of sequential Bayesian estimation. More recent methods are fully data-driven and rely on the training of neural networks. The two approaches have demonstrated advantages in certain scenarios. In particular, in problems where plenty of labeled data for the training of neural networks is available, data-driven MOT tends to have advantages compared to traditional methods. A natural thought is whether a general and efficient framework can integrate the two approaches. This paper advances a recently introduced hybrid model-based and data-driven method called neural-enhanced belief propagation (NEBP). Compared to existing work on NEBP for MOT, it introduces a novel neural architecture that can improve data association and new object initialization, two critical aspects of MOT. The proposed tracking method is leading the nuScenes LiDAR-only tracking challenge at the time of submission of this paper.
Related papers
- Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Using Neural Networks by Modelling Semi-Active Shock Absorber [0.0]
A permanently increasing number of on-board automotive control systems requires new approaches to their digital mapping.
Various methods applying neural networks (NN) can be good candidates for relevant digital twin (DT) tools in automotive control system design.
The paper presents an approach, which demonstrates how the regression tasks can be efficiently handled by the modeling of a semi-active shock absorber.
arXiv Detail & Related papers (2022-07-19T09:21:21Z) - Neural Maximum A Posteriori Estimation on Unpaired Data for Motion
Deblurring [87.97330195531029]
We propose a Neural Maximum A Posteriori (NeurMAP) estimation framework for training neural networks to recover blind motion information and sharp content from unpaired data.
The proposed NeurMAP is an approach to existing deblurring neural networks, and is the first framework that enables training image deblurring networks on unpaired datasets.
arXiv Detail & Related papers (2022-04-26T08:09:47Z) - Neural Enhanced Belief Propagation for Data Assocation in Multiobject
Tracking [8.228150100178983]
Multiobject tracking (MOT) will create new services and applications in fields such as autonomous navigation and applied ocean sciences.
Belief propagation (BP) is a state-of-the-art method for Bayesian MOT but fully relies on a statistical model and preprocessed sensor measurements.
We establish a hybrid method for model-based and data-driven MOT. The proposed neural enhanced belief propagation (NEBP) approach complements BP by information learned from raw sensor data.
We evaluate the performance of our NEBP approach for MOT on the nuScenes autonomous driving dataset and demonstrate that it can outperform state-of-
arXiv Detail & Related papers (2022-03-17T00:12:48Z) - FFNB: Forgetting-Free Neural Blocks for Deep Continual Visual Learning [14.924672048447338]
We devise a dynamic network architecture for continual learning based on a novel forgetting-free neural block (FFNB)
Training FFNB features on new tasks is achieved using a novel procedure that constrains the underlying parameters in the null-space of the previous tasks.
arXiv Detail & Related papers (2021-11-22T17:23:34Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Model-Based Machine Learning for Communications [110.47840878388453]
We review existing strategies for combining model-based algorithms and machine learning from a high level perspective.
We focus on symbol detection, which is one of the fundamental tasks of communication receivers.
arXiv Detail & Related papers (2021-01-12T19:55:34Z) - TrackMPNN: A Message Passing Graph Neural Architecture for Multi-Object
Tracking [8.791710193028903]
This study follows many previous approaches to multi-object tracking (MOT) that model the problem using graph-based data structures.
We create a framework based on dynamic undirected graphs that represent the data association problem over multiple timesteps.
We also provide solutions and propositions for the computational problems that need to be addressed to create a memory-efficient, real-time, online algorithm.
arXiv Detail & Related papers (2021-01-11T21:52:25Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Pedestrian Trajectory Prediction with Convolutional Neural Networks [0.3787359747190393]
We propose a new approach to pedestrian trajectory prediction, with the introduction of a novel 2D convolutional model.
This new model outperforms recurrent models, and it achieves state-of-the-art results on the ETH and TrajNet datasets.
We also present an effective system to represent pedestrian positions and powerful data augmentation techniques.
arXiv Detail & Related papers (2020-10-12T15:51:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.