Cooperative and Asynchronous Transformer-based Mission Planning for Heterogeneous Teams of Mobile Robots
- URL: http://arxiv.org/abs/2410.06372v1
- Date: Tue, 8 Oct 2024 21:14:09 GMT
- Title: Cooperative and Asynchronous Transformer-based Mission Planning for Heterogeneous Teams of Mobile Robots
- Authors: Milad Farjadnasab, Shahin Sirouspour,
- Abstract summary: This paper presents the Cooperative and Asynchronous Transformer-based Mission Planning (CATMiP) framework.
CatMiP uses multi-agent reinforcement learning to coordinate agents with heterogeneous sensing, motion, and actuation capabilities.
It easily adapts to mission complexities and communication constraints, and scales to varying environment sizes and team compositions.
- Score: 1.1049608786515839
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coordinating heterogeneous teams of mobile robots for tasks such as search and rescue is highly challenging. This is due to the complexities of perception, decision making and planning in such environments, with agents' non-synchronous operation, constrained communication, and limited computational resources. This paper presents the Cooperative and Asynchronous Transformer-based Mission Planning (CATMiP) framework, which leverages multi-agent reinforcement learning (MARL) to effectively coordinate agents with heterogeneous sensing, motion, and actuation capabilities. The framework introduces a Class-based Macro-Action Decentralized Partially Observable Markov Decision Process (CMD-POMDP) model to handle asynchronous decision-making among different agent classes via macro-actions. It also extends the Multi-Agent Transformer (MAT) architecture to facilitate distributed, ad hoc communication among the agents. CATMiP easily adapts to mission complexities and communication constraints, and scales to varying environment sizes and team compositions. Simulations demonstrate its scalability and ability to achieve cooperative mission objectives with two classes of explorer and rescuer agents, even under severe communication constraints. The code is available at https://github.com/mylad13/CATMiP.
Related papers
- Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - Towards Collaborative Intelligence: Propagating Intentions and Reasoning for Multi-Agent Coordination with Large Language Models [41.95288786980204]
Current agent frameworks often suffer from dependencies on single-agent execution and lack robust inter- module communication.
We present a framework for training large language models as collaborative agents to enable coordinated behaviors in cooperative MARL.
A propagation network transforms broadcast intentions into teammate-specific communication messages, sharing relevant goals with designated teammates.
arXiv Detail & Related papers (2024-07-17T13:14:00Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScope is a developer-centric multi-agent platform with message exchange as its core communication mechanism.
The abundant syntactic tools, built-in agents and service functions, user-friendly interfaces for application demonstration and utility monitor, zero-code programming workstation, and automatic prompt tuning mechanism significantly lower the barriers to both development and deployment.
arXiv Detail & Related papers (2024-02-21T04:11:28Z) - Multi-Agent Reinforcement Learning for Pragmatic Communication and
Control [40.11766545693947]
We propose a joint design that combines goal-oriented communication and networked control into a single optimization model.
Joint training of the communication and control systems can significantly improve the overall performance.
arXiv Detail & Related papers (2023-02-28T08:30:24Z) - A Unified Architecture for Dynamic Role Allocation and Collaborative
Task Planning in Mixed Human-Robot Teams [0.0]
We present a novel architecture for dynamic role allocation and collaborative task planning in a mixed human-robot team of arbitrary size.
The architecture capitalizes on a centralized reactive and modular task-agnostic planning method based on Behavior Trees (BTs)
Different metrics used as MILP cost allow the architecture to favor various aspects of the collaboration.
arXiv Detail & Related papers (2023-01-19T12:30:56Z) - AdverSAR: Adversarial Search and Rescue via Multi-Agent Reinforcement
Learning [4.843554492319537]
We propose an algorithm that allows robots to efficiently coordinate their strategies in the presence of adversarial inter-agent communications.
It is assumed that the robots have no prior knowledge of the target locations, and they can interact with only a subset of neighboring robots at any time.
The effectiveness of our approach is demonstrated on a collection of prototype grid-world environments.
arXiv Detail & Related papers (2022-12-20T08:13:29Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGen is a framework that combines a learned policy to predict subgoals and a motion generator to plan and execute the motion needed to reach these subgoals.
Our method is benchmarked on a diverse set of seven robotics tasks in photo-realistic simulation environments.
ReLMoGen shows outstanding transferability between different motion generators at test time, indicating a great potential to transfer to real robots.
arXiv Detail & Related papers (2020-08-18T08:05:15Z) - A Cordial Sync: Going Beyond Marginal Policies for Multi-Agent Embodied
Tasks [111.34055449929487]
We introduce the novel task FurnMove in which agents work together to move a piece of furniture through a living room to a goal.
Unlike existing tasks, FurnMove requires agents to coordinate at every timestep.
We identify two challenges when training agents to complete FurnMove: existing decentralized action sampling procedures do not permit expressive joint action policies.
Using SYNC-policies and CORDIAL, our agents achieve a 58% completion rate on FurnMove, an impressive absolute gain of 25 percentage points over competitive decentralized baselines.
arXiv Detail & Related papers (2020-07-09T17:59:57Z) - Learning Structured Communication for Multi-agent Reinforcement Learning [104.64584573546524]
This work explores the large-scale multi-agent communication mechanism under a multi-agent reinforcement learning (MARL) setting.
We propose a novel framework termed as Learning Structured Communication (LSC) by using a more flexible and efficient communication topology.
arXiv Detail & Related papers (2020-02-11T07:19:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.