論文の概要: Evaluating the Dependency Between Cyclomatic Complexity and Response For Class
- arxiv url: http://arxiv.org/abs/2410.06416v1
- Date: Tue, 8 Oct 2024 23:00:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 05:49:26.026133
- Title: Evaluating the Dependency Between Cyclomatic Complexity and Response For Class
- Title(参考訳): 循環的複雑度と授業反応の依存性の評価
- Authors: Maxim Stavtsev, Yegor Bugayenko,
- Abstract要約: 私たちは1,000のGitHubリポジトリから862,517のJavaクラスを分析しました。
以上の結果から, 累積的マッケイブ循環複雑度 (CC) とメソッド数との間には, ピアソンの相関関係が強いことが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In object-oriented programming, it is reasonable to hypothesize that smaller classes with fewer methods are less complex. Should this hypothesis hold true, it would be advisable for programmers to design classes with fewer methods, as complexity significantly contributes to poor maintainability. To test this assumption, we analyzed 862,517 Java classes from 1,000 open GitHub repositories. Our findings indicate a strong Pearson correlation of 0.79 between the cumulative McCabe's Cyclomatic Complexity (CC) of all class methods and the number of methods, a metric known as Response for Class (RFC).
- Abstract(参考訳): オブジェクト指向プログラミングでは、より少ないメソッドを持つより小さなクラスはより複雑でないという仮定が妥当である。
この仮説が本当なら、複雑性が保守性に著しく寄与するため、プログラマはメソッドが少ないクラスを設計することが望ましいだろう。
この仮定をテストするために、オープンなGitHubリポジトリ1,000から872,517のJavaクラスを分析しました。
以上の結果から,すべてのクラスメソッドの累積的マッケイブ循環複雑度 (CC) とメソッド数 (RFC) との間には, ピアソンの相関関係が強いことが示唆された。
関連論文リスト
- Optimal Multi-Distribution Learning [88.3008613028333]
マルチディストリビューション学習は、$k$の異なるデータ分散における最悪のリスクを最小限に抑える共有モデルを学ぶことを目指している。
本稿では, (d+k)/varepsilon2の順に, サンプルの複雑さを伴って, ヴァレプシロン最適ランダム化仮説を導出するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-08T16:06:29Z) - Multiclass Boosting: Simple and Intuitive Weak Learning Criteria [72.71096438538254]
実現可能性の仮定を必要としない,単純かつ効率的なブースティングアルゴリズムを提案する。
本稿では,リスト学習者の向上に関する新たな結果と,マルチクラスPAC学習の特徴付けのための新しい証明を提案する。
論文 参考訳(メタデータ) (2023-07-02T19:26:58Z) - Review of Methods for Handling Class-Imbalanced in Classification
Problems [0.0]
場合によっては、あるクラスはほとんどの例を含むが、他方はより重要なクラスであり、しかしながら、少数の例で表される。
本稿では、データレベル、アルゴリズムレベル、ハイブリッド、コスト感受性学習、ディープラーニングを含む、クラス不均衡による学習の問題に対処する最も広く使われている手法について検討する。
論文 参考訳(メタデータ) (2022-11-10T10:07:10Z) - Class-Imbalanced Complementary-Label Learning via Weighted Loss [8.934943507699131]
補完ラベル学習(Complementary-label Learning, CLL)は、弱い教師付き分類において広く用いられている。
クラス不均衡のトレーニングサンプルに直面すると、現実世界のデータセットでは大きな課題に直面します。
多クラス分類のためのクラス不均衡補完ラベルからの学習を可能にする新しい問題設定を提案する。
論文 参考訳(メタデータ) (2022-09-28T16:02:42Z) - Risk Consistent Multi-Class Learning from Label Proportions [64.0125322353281]
本研究は,バッグにトレーニングインスタンスを提供するMCLLP設定によるマルチクラス学習に対処する。
既存のほとんどのMCLLPメソッドは、インスタンスの予測や擬似ラベルの割り当てにバッグワイズな制約を課している。
経験的リスク最小化フレームワークを用いたリスク一貫性手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T03:49:04Z) - Set-valued prediction in hierarchical classification with constrained
representation complexity [4.258263831866309]
階層的多クラス分類問題に焦点をあて、有効集合が階層の内部ノードに対応する。
我々は3つの手法を提案し、それらをベンチマークデータセット上で評価する。
論文 参考訳(メタデータ) (2022-03-13T15:13:19Z) - A Similarity-based Framework for Classification Task [21.182406977328267]
類似性に基づく手法は,複数ラベル学習のための新しい手法のクラスを生み出し,有望な性能を達成する。
類似性に基づく学習と一般化された線形モデルを組み合わせて、両方の世界のベストを達成します。
論文 参考訳(メタデータ) (2022-03-05T06:39:50Z) - Provable Reinforcement Learning with a Short-Term Memory [68.00677878812908]
我々はPMDPsの新しいサブクラスについて研究し、その潜在状態は、最近の短い長さ$m$の履歴によって復号化することができる。
特に、リッチ・オブザーブレーション・セッティングにおいて、指数関数的にスケールするサンプル複雑性を持つ新しい「モーメントマッチング」アプローチを用いて、新しいアルゴリズムを開発する。
以上の結果から,これらの環境下での強化学習には短期記憶が十分であることが示唆された。
論文 参考訳(メタデータ) (2022-02-08T16:39:57Z) - Recursive Causal Structure Learning in the Presence of Latent Variables
and Selection Bias [27.06618125828978]
本稿では,潜伏変数と選択バイアスの存在下での観測データからシステムの因果MAGを学習する問題を考察する。
本稿では,音と完全性を備えた計算効率のよい制約ベースの新しい手法を提案する。
提案手法と人工と実世界の両方の構造に関する技術の現状を比較した実験結果を提供する。
論文 参考訳(メタデータ) (2021-10-22T19:49:59Z) - Multi-Class Classification from Single-Class Data with Confidences [90.48669386745361]
本稿では,損失/モデル/最適化非依存のリスク最小化フレームワークを提案する。
提案手法は, 与えられた信頼度が高ノイズであっても, 簡易な修正でベイズ整合性を示す。
論文 参考訳(メタデータ) (2021-06-16T15:38:13Z) - GistNet: a Geometric Structure Transfer Network for Long-Tailed
Recognition [95.93760490301395]
長い尾の認識は、クラスごとのサンプル数が非常にアンバランスである問題です。
GistNetは、クラスジオメトリをエンコードするために分類パラメータのコンステレーションを使用して、この目標をサポートするように提案されている。
新しい学習アルゴリズムがGeometrIc Structure Transfer (GIST) に提案され、クラスバランスとランダムサンプリングを組み合わせた損失関数の組み合わせにより、一般的なクラスに過度に適合することは幾何パラメータに制限されるが、人気クラスから少数ショットクラスへのクラス幾何学の転送に利用される。
論文 参考訳(メタデータ) (2021-05-01T00:37:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。