論文の概要: Cryptocurrency Price Forecasting Using Machine Learning: Building Intelligent Financial Prediction Models
- arxiv url: http://arxiv.org/abs/2508.01419v1
- Date: Sat, 02 Aug 2025 15:54:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:21.871838
- Title: Cryptocurrency Price Forecasting Using Machine Learning: Building Intelligent Financial Prediction Models
- Title(参考訳): 機械学習を用いた暗号価格予測:インテリジェントな財務予測モデルの構築
- Authors: Md Zahidul Islam, Md Shafiqur Rahman, Md Sumsuzoha, Babul Sarker, Md Rafiqul Islam, Mahfuz Alam, Sanjib Kumar Shil,
- Abstract要約: 本稿では,VVR(Volume-to-Volatility Ratio)とVWAP(Volume-Weighted Average Price)の2つの重要な流動性プロキシ指標を紹介する。
これらの指標は市場の安定性と流動性を明確に理解し、最終的に価格予測の精度を向上します。
当社の調査結果は、米国のデジタル資産市場で、トレーダーやデベロッパーがより賢くリスクに配慮した戦略を創り出そうとする上で貴重な洞察を提供する。
- 参考スコア(独自算出の注目度): 1.252620193191587
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cryptocurrency markets are experiencing rapid growth, but this expansion comes with significant challenges, particularly in predicting cryptocurrency prices for traders in the U.S. In this study, we explore how deep learning and machine learning models can be used to forecast the closing prices of the XRP/USDT trading pair. While many existing cryptocurrency prediction models focus solely on price and volume patterns, they often overlook market liquidity, a crucial factor in price predictability. To address this, we introduce two important liquidity proxy metrics: the Volume-To-Volatility Ratio (VVR) and the Volume-Weighted Average Price (VWAP). These metrics provide a clearer understanding of market stability and liquidity, ultimately enhancing the accuracy of our price predictions. We developed four machine learning models, Linear Regression, Random Forest, XGBoost, and LSTM neural networks, using historical data without incorporating the liquidity proxy metrics, and evaluated their performance. We then retrained the models, including the liquidity proxy metrics, and reassessed their performance. In both cases (with and without the liquidity proxies), the LSTM model consistently outperformed the others. These results underscore the importance of considering market liquidity when predicting cryptocurrency closing prices. Therefore, incorporating these liquidity metrics is essential for more accurate forecasting models. Our findings offer valuable insights for traders and developers seeking to create smarter and more risk-aware strategies in the U.S. digital assets market.
- Abstract(参考訳): 暗号通貨市場は急速に成長しているが、この拡大は特に米国のトレーダーに対する仮想通貨価格の予測において大きな課題を生んでいる。
本研究では,ディープラーニングモデルと機械学習モデルを用いて,XRP/USDTトレーディングペアの閉値の予測を行う。
既存の暗号通貨予測モデルは価格とボリュームパターンだけに焦点を絞っているが、価格予測の重要な要素である市場の流動性を見落としていることが多い。
これを解決するために,VVR(Volume-to-Volatility Ratio)とVWAP(Volume-Weighted Average Price)という2つの重要な流動性プロキシ指標を紹介した。
これらの指標は市場の安定性と流動性を明確に理解し、最終的に価格予測の精度を向上します。
我々は,リニア回帰,ランダムフォレスト,XGBoost,LSTMニューラルネットワークの4つの機械学習モデルを開発した。
その後、流動性プロキシメトリクスを含むモデルを再トレーニングし、パフォーマンスを再評価しました。
いずれの場合も(流動性プロキシを伴わずとも)LSTMモデルは他よりも一貫して優れていた。
これらの結果は、暗号通貨の閉鎖価格を予測する際に市場流動性を考慮することの重要性を浮き彫りにしている。
したがって、これらの流動性指標を組み込むことは、より正確な予測モデルに不可欠である。
当社の調査結果は、米国のデジタル資産市場で、トレーダーやデベロッパーがより賢くリスクに配慮した戦略を創り出そうとする上で貴重な洞察を提供する。
関連論文リスト
- Building crypto portfolios with agentic AI [46.348283638884425]
暗号通貨市場の急速な成長は投資家に新たな機会を与えたが、同時に高いボラティリティがもたらされた。
本稿では,暗号アロケーションを自律的に構築し,評価するためのマルチエージェントシステムの実用化について述べる。
論文 参考訳(メタデータ) (2025-07-11T18:03:51Z) - crypto price prediction using lstm+xgboost [0.0]
本研究では,Long Short-Term Memory(LSTM)ネットワークとExtreme Gradient Boosting(XGBoost)を統合したハイブリッドディープラーニングと機械学習モデルを提案する。
LSTMコンポーネントは過去の価格データの時間的依存性を捉え、XGBoostは感情スコアやマクロ経済指標などの補助的特徴との非線形関係をモデル化することによって予測を強化する。
このモデルは、Bitcoin、Dogecoin、Litecoinの歴史的データセットに基づいて評価され、グローバルおよびローカライズされた交換データの両方を取り入れている。
論文 参考訳(メタデータ) (2025-06-27T09:49:25Z) - CryptoMamba: Leveraging State Space Models for Accurate Bitcoin Price Prediction [28.15955243872829]
本稿では,マンバをベースとした新しいステートスペースモデル(SSM)アーキテクチャであるCryptoMambaを提案する。
我々の実験は、CryptoMambaがより正確な予測を提供するだけでなく、異なる市場条件における一般化性も向上していることを示している。
我々の調査結果は、株式や暗号通貨の価格予測タスクにおいて、SSMにとって大きな優位性を示している。
論文 参考訳(メタデータ) (2025-01-02T02:16:56Z) - FinBERT-BiLSTM: A Deep Learning Model for Predicting Volatile Cryptocurrency Market Prices Using Market Sentiment Dynamics [3.6423651166048874]
本稿では,双方向長短期メモリ(Bidirectional Long Short-Term Memory, Bi-LSTM)ネットワークとFinBERTを併用して,暗号通貨の予測精度を向上させるハイブリッドモデルを提案する。
このアプローチは、先進的な時系列モデルと感情分析を組み合わせることで、不安定な金融市場の予測において重要なギャップを埋める。
論文 参考訳(メタデータ) (2024-11-02T14:43:06Z) - Predicting Bitcoin Market Trends with Enhanced Technical Indicator Integration and Classification Models [6.39158540499473]
本研究では,暗号市場の方向性を予測するための分類に基づく機械学習モデルを提案する。
歴史的データと、移動平均収束分量、相対強度指数、ボリンジャーバンドなどの重要な技術指標を用いて訓練されている。
その結果、購入/販売信号の精度は92%を超えた。
論文 参考訳(メタデータ) (2024-10-09T14:29:50Z) - Cryptocurrency Price Forecasting Using XGBoost Regressor and Technical Indicators [2.038893829552158]
本研究では,暗号通貨の価格を予測するための機械学習手法を提案する。
我々は、XGBoost回帰モデルの訓練および供給のために、EMA(Exponential moving Avergence)やMACD( moving Avergence Divergence)といった重要な技術指標を活用している。
モデルの性能を様々なシミュレーションにより評価し,有望な結果を示す。
論文 参考訳(メタデータ) (2024-07-16T14:41:27Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
LLMによって駆動される、StockAgentと呼ばれるマルチエージェントAIシステムを開発した。
StockAgentを使えば、ユーザーはさまざまな外部要因が投資家取引に与える影響を評価することができる。
AIエージェントに基づく既存のトレーディングシミュレーションシステムに存在するテストセットのリーク問題を回避する。
論文 参考訳(メタデータ) (2024-07-15T06:49:30Z) - A Comprehensive Analysis of Machine Learning Models for Algorithmic Trading of Bitcoin [0.3069335774032178]
本研究は,アルゴリズム取引におけるビットコイン価格の予測において,21の分類器と20の回帰器を含む41の機械学習モデルの性能を評価する。
我々の包括的な分析は、各モデルの強みと限界を明らかにし、効果的な取引戦略を開発する上で重要な洞察を与えます。
論文 参考訳(メタデータ) (2024-07-09T13:07:43Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。