論文の概要: Similarity Learning with neural networks
- arxiv url: http://arxiv.org/abs/2410.07214v1
- Date: Thu, 26 Sep 2024 15:48:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 21:37:02.367590
- Title: Similarity Learning with neural networks
- Title(参考訳): ニューラルネットワークによる類似性学習
- Authors: Gabriel Sanfins, Fabio Ramos, Danilo Naiff,
- Abstract要約: 本稿では,データから類似性関係を自動的に識別するニューラルネットワークアルゴリズムを提案する。
これらの類似性関係を明らかにすることで、ネットワークは次元のない量と次元のない変数と係数を関連付ける基礎となる物理法則を近似する。
- 参考スコア(独自算出の注目度): 14.02420993592526
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we introduce a neural network algorithm designed to automatically identify similarity relations from data. By uncovering these similarity relations, our network approximates the underlying physical laws that relate dimensionless quantities to their dimensionless variables and coefficients. Additionally, we develop a linear algebra framework, accompanied by code, to derive the symmetry groups associated with these similarity relations. While our approach is general, we illustrate its application through examples in fluid mechanics, including laminar Newtonian and non-Newtonian flows in smooth pipes, as well as turbulent flows in both smooth and rough pipes. Such examples are chosen to highlight the framework's capability to handle both simple and intricate cases, and further validates its effectiveness in discovering underlying physical laws from data.
- Abstract(参考訳): 本研究では,データから類似性関係を自動的に識別するニューラルネットワークアルゴリズムを提案する。
これらの類似性関係を明らかにすることで、ネットワークは次元のない量と次元のない変数と係数を関連付ける基礎となる物理法則を近似する。
さらに、これらの類似性関係に関連する対称性群を導出するために、コードを伴う線形代数フレームワークを開発する。
我々のアプローチは概ね一般的であるが、ラミナルニュートン流や非ニュートン流、滑らかな管内における乱流、滑らかな管内および粗い管内における乱流などの流体力学の例を通してその応用を解説する。
このような例は、単純なケースと複雑なケースの両方を扱うフレームワークの機能を強調し、データから基礎となる物理法則を発見する上での有効性をさらに検証するために選択される。
関連論文リスト
- Data-driven discovery of self-similarity using neural networks [0.0]
本稿では、観測データから直接自己相似性を発見するニューラルネットワークに基づく新しいアプローチを提案する。
物理問題における自己相似解の存在は、支配法則が権力者指数によって主張される関数を含むことを示す。
観測データを用いてニューラルネットワークモデルをトレーニングし、トレーニングが成功すれば、物理問題のスケール・トランスフォーメーション対称性を特徴付けるパワー指数を抽出できる。
論文 参考訳(メタデータ) (2024-06-06T09:36:05Z) - Demolition and Reinforcement of Memories in Spin-Glass-like Neural
Networks [0.0]
この論文の目的は、連想記憶モデルと生成モデルの両方において、アンラーニングの有効性を理解することである。
構造化データの選択により、連想記憶モデルは、相当量のアトラクションを持つニューラルダイナミクスのアトラクションとしての概念を検索することができる。
Boltzmann Machinesの新しい正規化手法が提案され、データセットから隠れ確率分布を学習する以前に開発された手法より優れていることが証明された。
論文 参考訳(メタデータ) (2024-03-04T23:12:42Z) - Going Beyond Neural Network Feature Similarity: The Network Feature
Complexity and Its Interpretation Using Category Theory [64.06519549649495]
機能的に等価な機能と呼ぶものの定義を提供します。
これらの特徴は特定の変換の下で等価な出力を生成する。
反復的特徴マージ(Iterative Feature Merging)というアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-10T16:27:12Z) - Unsupervised Learning of Invariance Transformations [105.54048699217668]
近似グラフ自己同型を見つけるためのアルゴリズムフレームワークを開発する。
重み付きグラフにおける近似自己同型を見つけるために、このフレームワークをどのように利用できるかについて議論する。
論文 参考訳(メタデータ) (2023-07-24T17:03:28Z) - Dimension of activity in random neural networks [6.752538702870792]
ニューラルネットワークは、多くの連結ユニットの協調活動を通して情報を処理する高次元非線形力学系である。
二点共分散をDMFTを用いて自己整合的に計算する。
我々の公式は、幅広い単単位力学に適用され、非二項結合に一般化される。
論文 参考訳(メタデータ) (2022-07-25T17:38:21Z) - On Neural Architecture Inductive Biases for Relational Tasks [76.18938462270503]
合成ネットワーク一般化(CoRelNet)と呼ばれる類似度分布スコアに基づく簡単なアーキテクチャを導入する。
単純なアーキテクチャの選択は、分布外一般化において既存のモデルより優れていることが分かる。
論文 参考訳(メタデータ) (2022-06-09T16:24:01Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Deconfounded Representation Similarity for Comparison of Neural Networks [16.23053104309891]
類似度指標は、入力空間内のデータ項目の集団構造によって構成される。
類似度指標を分解することで,意味論的に類似したニューラルネットワークを検出する分解能が向上することを示す。
論文 参考訳(メタデータ) (2022-01-31T21:25:02Z) - Estimating informativeness of samples with Smooth Unique Information [108.25192785062367]
サンプルが最終的な重みを知らせる量と、重みによって計算される関数を知らせる量を測定します。
線形化ネットワークを用いてこれらの量の効率的な近似を行う。
本稿では,データセットの要約など,いくつかの問題に適用する。
論文 参考訳(メタデータ) (2021-01-17T10:29:29Z) - Deep Archimedean Copulas [98.96141706464425]
ACNetは、構造的特性を強制する、新しい差別化可能なニューラルネットワークアーキテクチャである。
我々は、ACNetが共通のアルキメデスコピュラスを近似し、データに適合する可能性のある新しいコプラを生成することができることを示した。
論文 参考訳(メタデータ) (2020-12-05T22:58:37Z) - A Framework for Learning Invariant Physical Relations in Multimodal
Sensory Processing [0.0]
我々は、教師なしの方法で、知覚的手がかり間の関係を学習できる新しいニューラルネットワークアーキテクチャを設計する。
低次元知覚データにおける任意の非線形関係を学習する際のコアシステム機能について述べる。
我々は、標準的なRGBカメラフレームから物理量間の関係を学習する現実世界の学習問題を通してこれを実証する。
論文 参考訳(メタデータ) (2020-06-30T08:42:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。