論文の概要: Bayes-Nash Generative Privacy Protection Against Membership Inference Attacks
- arxiv url: http://arxiv.org/abs/2410.07414v2
- Date: Thu, 05 Dec 2024 17:14:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:52:59.783770
- Title: Bayes-Nash Generative Privacy Protection Against Membership Inference Attacks
- Title(参考訳): ベイズ・ナッシュによる会員推測攻撃に対するプライバシー保護
- Authors: Tao Zhang, Rajagopal Venkatesaraman, Rajat K. De, Bradley A. Malin, Yevgeniy Vorobeychik,
- Abstract要約: 本稿では,プライバシ保護をディフェンダーとアタッカーのベイズゲームとしてモデル化するゲーム理論フレームワークを提案する。
ベイズ・ナッシュ生成プライバシ(BNGP)戦略は、被告の好みに合わせて最適なプライバシーユーティリティトレードオフを実現する。
バイナリデータセット要約統計学のケーススタディでは、BNGPがLRTベースの攻撃よりも優れていることが示されている。
- 参考スコア(独自算出の注目度): 24.330984323956173
- License:
- Abstract: Membership inference attacks (MIAs) expose significant privacy risks by determining whether an individual's data is in a dataset. While differential privacy (DP) mitigates such risks, it faces challenges in general when achieving an optimal balance between privacy and utility, often requiring intractable sensitivity calculations and limiting flexibility in complex compositions. We propose a game-theoretic framework that models privacy protection as a Bayesian game between a defender and an attacker, solved using a general-sum Generative Adversarial Network (general-sum GAN). The Bayes Generative Privacy (BGP) response, based on cross-entropy loss, defines the attacker's optimal strategy, leading to the Bayes-Nash Generative Privacy (BNGP) strategy, which achieves the optimal privacy-utility trade-off tailored to the defender's preferences. The BNGP strategy avoids sensitivity calculations, supports compositions of correlated mechanisms, and is robust to the attacker's heterogeneous preferences over true and false positives. A case study on binary dataset summary statistics demonstrates its superiority over likelihood ratio test (LRT)-based attacks, including the uniformly most powerful LRT. Empirical results confirm BNGP's effectiveness.
- Abstract(参考訳): メンバーシップ推論攻撃(MIA)は、個人のデータがデータセットにあるかどうかを判断することで、重大なプライバシーリスクを露呈する。
差分プライバシー(DP)はそのようなリスクを軽減するが、一般的にプライバシーとユーティリティの最適バランスを達成する際には、しばしば難解な感度計算と複雑な構成の柔軟性の制限を必要とする。
本稿では, 一般的なGAN(General-sum Generative Adversarial Network)を用いて, プライバシ保護をディフェンダーとアタッカーのベイズゲームとしてモデル化するゲーム理論フレームワークを提案する。
クロスエントロピー損失に基づくベイズ生成プライバシ(BGP)対応は、攻撃者の最適な戦略を定義し、攻撃者の好みに合わせて最適なプライバシー利用トレードオフを実現する、ベイズ・ナッシュ生成プライバシ(BNGP)戦略に繋がる。
BNGP戦略は感度計算を回避し、相関メカニズムの合成をサポートし、真と偽の正に対する攻撃者の不均一な選好に対して堅牢である。
バイナリデータセット要約統計のケーススタディでは、一様に強力なLRTを含むLRTベースの攻撃よりも、その優位性を示している。
実験によりBNGPの有効性が確認された。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - A Game-Theoretic Approach to Privacy-Utility Tradeoff in Sharing Genomic Summary Statistics [24.330984323956173]
本稿では,ゲノムサマリー統計の共有において,最適なプライバシ・ユーティリティ・トレードオフのためのゲーム理論フレームワークを提案する。
実験により,提案手法は,技術状況よりも強力な攻撃と強力な防衛戦略をもたらすことが示された。
論文 参考訳(メタデータ) (2024-06-03T22:09:47Z) - Incentives in Private Collaborative Machine Learning [56.84263918489519]
コラボレーション型機械学習は、複数のパーティのデータに基づいてモデルをトレーニングする。
インセンティブとして差分プライバシー(DP)を導入する。
合成および実世界のデータセットに対するアプローチの有効性と実用性を実証的に実証した。
論文 参考訳(メタデータ) (2024-04-02T06:28:22Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
インスタンスごとの差分プライバシー(pDP)やフィッシャー情報損失(FIL)といったデータ依存のプライバシ会計フレームワークは、固定されたトレーニングデータセット内の個人に対してきめ細かいプライバシー保証を提供する。
本稿では,データ依存会計下でのプライバシ保証を向上することを示すとともに,バウンドサポートによるガウス機構の簡単な修正を提案する。
論文 参考訳(メタデータ) (2024-03-07T21:22:07Z) - $\alpha$-Mutual Information: A Tunable Privacy Measure for Privacy
Protection in Data Sharing [4.475091558538915]
本稿では, 有基の$alpha$-Mutual Informationを調整可能なプライバシ尺度として採用する。
我々は、プライバシ保護を提供するためにオリジナルのデータを操作するための一般的な歪みに基づくメカニズムを定式化する。
論文 参考訳(メタデータ) (2023-10-27T16:26:14Z) - Conditional Density Estimations from Privacy-Protected Data [0.0]
プライバシ保護されたデータセットからのシミュレーションに基づく推論手法を提案する。
本稿では,感染性疾患モデルと通常の線形回帰モデルに基づく個別時系列データについて述べる。
論文 参考訳(メタデータ) (2023-10-19T14:34:17Z) - Membership Inference Attacks against Synthetic Data through Overfitting
Detection [84.02632160692995]
我々は、攻撃者が基礎となるデータ分布についてある程度の知識を持っていると仮定する現実的なMIA設定について論じる。
生成モデルの局所的なオーバーフィッティングをターゲットとして,メンバシップを推論することを目的とした密度ベースMIAモデルであるDOMIASを提案する。
論文 参考訳(メタデータ) (2023-02-24T11:27:39Z) - Enabling Trade-offs in Privacy and Utility in Genomic Data Beacons and
Summary Statistics [26.99521354120141]
要約データやBeaconの応答とプライバシを明示的にトレードオフするための最適化ベースのアプローチを導入します。
第一に、攻撃者はメンバーシップ推論のクレームを行うために確率比テストを適用する。
第2に、攻撃者は、個人間のスコアの分離に対するデータリリースの影響を考慮に入れたしきい値を使用する。
論文 参考訳(メタデータ) (2023-01-11T19:16:13Z) - No Free Lunch in "Privacy for Free: How does Dataset Condensation Help
Privacy" [75.98836424725437]
データプライバシを保護するために設計された新しい手法は、慎重に精査する必要がある。
プライバシ保護の失敗は検出し難いが,プライバシ保護法を実装したシステムが攻撃された場合,破滅的な結果につながる可能性がある。
論文 参考訳(メタデータ) (2022-09-29T17:50:23Z) - Federated Deep Learning with Bayesian Privacy [28.99404058773532]
フェデレートラーニング(FL)は、ユーザ間でプライベートデータを共有せずにモデルを協調的に学習することで、データのプライバシを保護することを目的としている。
ホモモルフィック暗号化(HE)ベースの手法は、セキュアなプライバシ保護を提供するが、非常に高い計算と通信のオーバーヘッドに悩まされる。
差分プライバシ(DP)を用いたディープラーニングは,複雑な管理コストで実践的な学習アルゴリズムとして実装された。
論文 参考訳(メタデータ) (2021-09-27T12:48:40Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。