論文の概要: KACQ-DCNN: Uncertainty-Aware Interpretable Kolmogorov-Arnold Classical-Quantum Dual-Channel Neural Network for Heart Disease Detection
- arxiv url: http://arxiv.org/abs/2410.07446v4
- Date: Sun, 17 Aug 2025 21:32:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 14:49:09.683115
- Title: KACQ-DCNN: Uncertainty-Aware Interpretable Kolmogorov-Arnold Classical-Quantum Dual-Channel Neural Network for Heart Disease Detection
- Title(参考訳): KACQ-DCNN:心疾患検出のための不確かさを意識したKolmogorov-Arnold古典的量子チャネルニューラルネットワーク
- Authors: Md Abrar Jahin, Md. Akmol Masud, M. F. Mridha, Zeyar Aung, Nilanjan Dey,
- Abstract要約: 心不全は世界的な死亡の原因であり、診断戦略の改善が必要である。
我々はKolmogorov-Arnold Classical-Quantum Dual-Channel Neural Network (KACQ-DCNN)を提案する。
私たちのモデルは、古典的および12の量子ニューラルネットワークを含む37のベンチマークモデルより優れています。
- 参考スコア(独自算出の注目度): 1.927711700724334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heart failure is a leading cause of global mortality, necessitating improved diagnostic strategies. Classical machine learning models struggle with challenges such as high-dimensional data, class imbalances, poor feature representations, and a lack of interpretability. While quantum machine learning holds promise, current hybrid models have not fully exploited quantum advantages. In this paper, we propose the Kolmogorov-Arnold Classical-Quantum Dual-Channel Neural Network (KACQ-DCNN), a novel hybrid architecture that replaces traditional multilayer perceptrons with Kolmogorov-Arnold Networks (KANs), enabling learnable univariate activation functions. Our KACQ-DCNN 4-qubit, 1-layer model outperforms 37 benchmark models, including 16 classical and 12 quantum neural networks, achieving an accuracy of 92.03%, with macro-average precision, recall, and F1 scores of 92.00%. It also achieved a ROC-AUC of 94.77%, surpassing other models by significant margins, as validated by paired t-tests with a significance threshold of 0.0056 (after Bonferroni correction). Ablation studies highlight the synergistic effect of classical-quantum integration, improving performance by about 2% over MLP variants. Additionally, LIME and SHAP explainability techniques enhance feature interpretability, while conformal prediction provides robust uncertainty quantification. Our results demonstrate that KACQ-DCNN improves cardiovascular diagnostics by combining high accuracy with interpretability and uncertainty quantification.
- Abstract(参考訳): 心不全は世界的な死亡の原因であり、診断戦略の改善が必要である。
古典的な機械学習モデルは、高次元データ、クラス不均衡、機能表現の貧弱、解釈可能性の欠如といった課題に苦しむ。
量子機械学習は有望だが、現在のハイブリッドモデルは量子の利点を完全に活用していない。
本稿では,従来のマルチ層パーセプトロンをKAN(Kolmogorov-Arnold Networks)に置き換えた新しいハイブリッドアーキテクチャであるKACQ-DCNNを提案する。
KACQ-DCNN 4-qubit、1層モデルは、古典的および12の量子ニューラルネットワークを含む37のベンチマークモデルより優れており、マクロ平均精度、リコール、F1スコア92.00%の精度で92.03%の精度を実現している。
ROC-AUCの94.77%を達成し、ボネロニ補正後の0.0056の有意な閾値を持つペアのtテストによって検証された。
アブレーション研究は、古典量子積分の相乗効果を強調し、MLP変種よりも約2%性能を改善した。
加えて、LIMEとSHAPの説明可能性技術は特徴解釈可能性を高める一方、共形予測は堅牢な不確実性定量化を提供する。
以上の結果から,KACQ-DCNNは高い精度と解釈可能性,不確かさの定量化を併用することにより,心血管診断の改善を図っている。
関連論文リスト
- FD4QC: Application of Classical and Quantum-Hybrid Machine Learning for Financial Fraud Detection A Technical Report [36.1999598554273]
本稿では、古典的、量子的、量子ハイブリッドな機械学習モデルによる不正な金融活動のバイナリな行動分類の有効性について検討・比較する。
我々は、IBM Anti-Money Laundering (AML)データセット上で、さまざまなモデルを実装し、評価する。
実世界展開用に設計された実用的なAPI駆動システムアーキテクチャであるFD4QC(Fraud Detection for Quantum Computing)を提案する。
論文 参考訳(メタデータ) (2025-07-25T16:08:22Z) - Q2SAR: A Quantum Multiple Kernel Learning Approach for Drug Discovery [39.58317527488534]
本研究は、QSAR分類を強化するために、量子多重カーネル学習フレームワークを成功させたことを実証する。
本手法をDYRK1Aキナーゼ阻害剤を同定するためのデータセットに適用する。
古典的なグラディエントブースティングモデルに対してQMKL-SVMをベンチマークすることにより、量子化アプローチがより優れたAUCスコアを達成することを示す。
論文 参考訳(メタデータ) (2025-06-17T19:00:47Z) - Quantum Machine Learning for Predicting Anastomotic Leak: A Clinical Study [0.16777183511743468]
AL(Anastomotic leak)は,大腸癌術後の合併症である。
本研究では、AL予測のための量子ニューラルネットワーク(QNN)の可能性について検討する。
論文 参考訳(メタデータ) (2025-06-02T14:13:10Z) - Quantum Machine Learning in Healthcare: Evaluating QNN and QSVM Models [0.25602836891933073]
本研究では、量子ニューラルネットワーク(QNN)と量子サポートベクトルマシン(QSVM)に焦点を当てる。
以上の結果から,QSVMは全データセットでQNNよりも優れており,過度に適合する可能性が示唆された。
これらの発見は予備的ではあるが、医療分類タスクにおける量子モデルの可能性を強調している。
論文 参考訳(メタデータ) (2025-05-27T07:09:09Z) - Evaluating Effects of Augmented SELFIES for Molecular Understanding Using QK-LSTM [2.348041867134616]
副作用を含む分子特性の同定は、薬物開発において決定的だが時間を要するステップである。
Simplified Molecular Line-Entry System (SMILES) の強化による古典的領域における最近の進歩
本研究は, 分子特性予測と副作用同定の促進に向けた新たな知見を提示する。
論文 参考訳(メタデータ) (2025-04-29T14:03:31Z) - CQ CNN: A Hybrid Classical Quantum Convolutional Neural Network for Alzheimer's Disease Detection Using Diffusion Generated and U Net Segmented 3D MRI [0.0]
臨床MRIデータからアルツハイマー病(AD)を検出することは、医用画像研究の活発な領域である。
量子コンピューティングの最近の進歩は、従来の手法よりも優れたモデルを開発する新しい機会を提供する。
臨床用3次元MRIデータを用いたAD検出のためのエンドツーエンドの古典的量子畳み込みニューラルネットワーク(CQ CNN)を提案する。
論文 参考訳(メタデータ) (2025-03-04T07:08:47Z) - Hybrid Quantum Neural Networks with Amplitude Encoding: Advancing Recovery Rate Predictions [6.699192644249841]
回収率予測は、リスク評価の強化、ポートフォリオ割り当ての最適化、価格精度の向上など、債券投資戦略において重要な役割を担っている。
本稿では,Amplitudeを用いたハイブリッド量子機械学習(QML)モデルを提案する。
我々は1996年から2023年までの1,725の観測結果からなる地球規模の回復率データセット上でモデルを評価した。
論文 参考訳(メタデータ) (2025-01-27T07:27:23Z) - Dumpling GNN: Hybrid GNN Enables Better ADC Payload Activity Prediction Based on Chemical Structure [53.76752789814785]
DumplingGNNは、化学構造に基づいてADCペイロードのアクティビティを予測するために特別に設計された、ハイブリッドなグラフニューラルネットワークアーキテクチャである。
DNAトポイソメラーゼIインヒビターに着目した包括的ADCペイロードデータセットで評価を行った。
特別なADCペイロードデータセットに対して、例外的な精度(91.48%)、感度95.08%)、特異性(97.54%)を示す。
論文 参考訳(メタデータ) (2024-09-23T17:11:04Z) - Early Detection of Coronary Heart Disease Using Hybrid Quantum Machine Learning Approach [0.0]
冠動脈疾患(CHD)は重症心疾患であり,早期診断が不可欠である。
量子コンピューティングと機械学習(ML)技術の主流となる開発は、CHD診断の性能に実用的な改善をもたらす可能性がある。
医療業界における量子的な飛躍は、処理能力を高め、複数のモデルを最適化する。
論文 参考訳(メタデータ) (2024-09-17T07:08:39Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
心臓不全は世界中の何百万人もの人々に影響を与え、生活の質を著しく低下させ、高い死亡率をもたらす。
広範な研究にもかかわらず、ICU患者の心不全と死亡率の関係は、完全には理解されていない。
本研究は、ICD-9コードを用いて、MIMIC-IIIデータベースから18歳以上の1,177人のデータを解析した。
論文 参考訳(メタデータ) (2024-09-03T07:57:08Z) - Coronary Artery Disease Classification Using One-dimensional Convolutional Neural Network [0.7673339435080443]
冠状動脈疾患(CAD)は、世界的な死因であり、革新的な解決策を必要としている。
本稿では,1次元畳み込みニューラルネットワーク(1D-CNN)の可能性を提案し,検出精度を高め,ネットワークの複雑さを低減する。
本研究は,心電図(ECG)信号の複雑なパターンを特徴抽出技術に頼らずに解釈する1D-CNNの顕著な能力を活用し,従来の診断手法を超えている。
論文 参考訳(メタデータ) (2024-05-15T13:51:02Z) - Uncertainty Quantification in Multivariable Regression for Material Property Prediction with Bayesian Neural Networks [37.69303106863453]
物理インフォームドBNNにおける不確実性定量化(UQ)のアプローチを提案する。
本稿では, 鋼のクリープ破断寿命を予測するためのケーススタディを提案する。
クリープ寿命予測の最も有望なフレームワークは、マルコフ・チェイン・モンテカルロによるネットワークパラメータの後方分布の近似に基づくBNNである。
論文 参考訳(メタデータ) (2023-11-04T19:40:16Z) - Accurate and Scalable Estimation of Epistemic Uncertainty for Graph
Neural Networks [40.95782849532316]
信頼性インジケータ(CI)は、分散シフト下でグラフニューラルネットワーク(GNN)の安全なデプロイには不可欠である。
表現率やモデルサイズの増加がCIパフォーマンスの向上につながるとは限らないことを示す。
我々は最近提案されたフレームワークを拡張する新しい単一モデルUQ手法であるG-$UQを提案する。
全体として、我々の研究は、新しいフレキシブルなGNN UQメソッドを導入するだけでなく、安全クリティカルなタスクに関するGNN CIに関する新たな洞察も提供する。
論文 参考訳(メタデータ) (2023-09-20T00:35:27Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Quantum machine learning for image classification [39.58317527488534]
本研究では、量子力学の原理を有効計算に活用する2つの量子機械学習モデルを紹介する。
我々の最初のモデルは、並列量子回路を持つハイブリッド量子ニューラルネットワークであり、ノイズの多い中間スケール量子時代においても計算の実行を可能にする。
第2のモデルは、クオン進化層を持つハイブリッド量子ニューラルネットワークを導入し、畳み込みプロセスによる画像の解像度を低下させる。
論文 参考訳(メタデータ) (2023-04-18T18:23:20Z) - HARDC : A novel ECG-based heartbeat classification method to detect
arrhythmia using hierarchical attention based dual structured RNN with
dilated CNN [3.8791511769387625]
不整脈分類のための拡張CNN (HARDC) 法を用いたハイブリッド階層型双方向リカレントニューラルネットワークを開発した。
提案したHARDCは、拡張CNNと双方向リカレントニューラルネットワークユニット(BiGRU-BiLSTM)アーキテクチャをフル活用して、融合機能を生成する。
以上の結果から,複数種類の不整脈信号の分類を自動化し,高度に計算した手法が有望であることが示唆された。
論文 参考訳(メタデータ) (2023-03-06T13:26:29Z) - Physics Simulation Via Quantum Graph Neural Network [0.0]
量子グラフニューラルネットワーク(QGNN)の2つの実現法を開発し,実装する。
最初のQGNNは、古典的な情報として重ね合わせ状態を直接実装する能力に依存する投機的量子古典的ハイブリッド学習モデルである。
2つ目は量子古典的ハイブリッド学習モデルで、RX$回転ゲートのパラメータを通して直接粒子情報を伝播する。
論文 参考訳(メタデータ) (2023-01-11T20:21:10Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - Classification of ECG based on Hybrid Features using CNNs for Wearable
Applications [2.0999222360659604]
ハイブリッド機能と3つの異なるモデルを用いたECG分類の性能向上を示す。
この研究で提案されたRR間隔の特徴に基づくモデルでは、98.98%の精度が達成され、ベースラインモデルよりも改善された。
周波数特性とRR間隔特性を組み合わせた別のモデルが開発され、ノイズ環境下での良好な持続性能で99%の精度で達成された。
論文 参考訳(メタデータ) (2022-06-14T12:14:40Z) - The dilemma of quantum neural networks [63.82713636522488]
量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
論文 参考訳(メタデータ) (2021-06-09T10:41:47Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
本稿では,電子カルテから心血管イベントを予測するための注意機構を備えたマルチタスク・リカレントニューラルネットワークを提案する。
提案手法は、NHS Foundation Trustの5年間のデータを用いて、標準的な臨床リスク予測器(QRISK)と機械学習の代替手段と比較される。
論文 参考訳(メタデータ) (2020-07-16T17:43:13Z) - Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors [36.56528603807598]
そこで,各重み行列はランク1部分空間上の分布のみを含むBNNのランク1パラメータ化を提案する。
また、複数のモードをキャプチャするために、混合近似後続法を用いて再検討し、典型的な混合法とは異なり、この手法はメモリ増加を著しく小さくする。
ImageNetのResNet-50、CIFAR-10/100のWide ResNet 28-10、MIMIC-IIIのRNNでは、ランク1のBNNはログ、精度、キャリブレーションで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-05-14T17:58:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。