論文の概要: Evaluating Effects of Augmented SELFIES for Molecular Understanding Using QK-LSTM
- arxiv url: http://arxiv.org/abs/2504.20789v1
- Date: Tue, 29 Apr 2025 14:03:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.921119
- Title: Evaluating Effects of Augmented SELFIES for Molecular Understanding Using QK-LSTM
- Title(参考訳): QK-LSTMを用いた分子理解のための拡張SELFIESの効果評価
- Authors: Collin Beaudoin, Swaroop Ghosh,
- Abstract要約: 副作用を含む分子特性の同定は、薬物開発において決定的だが時間を要するステップである。
Simplified Molecular Line-Entry System (SMILES) の強化による古典的領域における最近の進歩
本研究は, 分子特性予測と副作用同定の促進に向けた新たな知見を提示する。
- 参考スコア(独自算出の注目度): 2.348041867134616
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Identifying molecular properties, including side effects, is a critical yet time-consuming step in drug development. Failing to detect these side effects before regulatory submission can result in significant financial losses and production delays, and overlooking them during the regulatory review can lead to catastrophic consequences. This challenge presents an opportunity for innovative machine learning approaches, particularly hybrid quantum-classical models like the Quantum Kernel-Based Long Short-Term Memory (QK-LSTM) network. The QK-LSTM integrates quantum kernel functions into the classical LSTM framework, enabling the capture of complex, non-linear patterns in sequential data. By mapping input data into a high-dimensional quantum feature space, the QK-LSTM model reduces the need for large parameter sets, allowing for model compression without sacrificing accuracy in sequence-based tasks. Recent advancements have been made in the classical domain using augmented variations of the Simplified Molecular Line-Entry System (SMILES). However, to the best of our knowledge, no research has explored the impact of augmented SMILES in the quantum domain, nor the role of augmented Self-Referencing Embedded Strings (SELFIES) in either classical or hybrid quantum-classical settings. This study presents the first analysis of these approaches, providing novel insights into their potential for enhancing molecular property prediction and side effect identification. Results reveal that augmenting SELFIES yields in statistically significant improvements from SMILES by a 5.97% improvement for the classical domain and a 5.91% improvement for the hybrid quantum-classical domain.
- Abstract(参考訳): 副作用を含む分子特性の同定は、薬物開発において決定的だが時間を要するステップである。
規制の提出前にこれらの副作用を検知できないことは、重大な財政損失と生産遅延をもたらし、規制審査中にそれらを見渡すことは、破滅的な結果をもたらす可能性がある。
この課題は、革新的な機械学習アプローチ、特にQuantum Kernel-Based Long Short-Term Memory (QK-LSTM)ネットワークのようなハイブリッド量子古典モデルへのチャンスを提供する。
QK-LSTMは量子カーネル関数を古典的なLSTMフレームワークに統合し、シーケンシャルデータにおける複雑な非線形パターンのキャプチャを可能にする。
入力データを高次元の量子特徴空間にマッピングすることにより、QK-LSTMモデルは大きなパラメータセットの必要性を低減し、シーケンスベースのタスクの精度を犠牲にすることなくモデル圧縮を可能にする。
近年,Simplified Molecular Line-Entry System (SMILES) の改良により,古典的領域における進歩が進んでいる。
しかしながら、我々の知る限り、量子領域における拡張SMILESの影響や、古典的またはハイブリッドな量子古典的設定における拡張自己参照埋め込み文字列(SELFIES)の役割についての調査は行われていない。
本研究は, 分子特性予測と副作用同定の促進に向けた新たな知見を提示する。
その結果、SELFIESの増大は、古典領域の5.97%の改善とハイブリッド量子古典領域の5.91%の改善により、SMILESから統計的に有意な改善をもたらすことが明らかとなった。
関連論文リスト
- Toward Practical Quantum Machine Learning: A Novel Hybrid Quantum LSTM for Fraud Detection [0.1398098625978622]
本稿では,不正検出のためのハイブリッド量子古典ニューラルネットワークアーキテクチャを提案する。
重畳や絡み合いなどの量子現象を活用することで、我々のモデルはシーケンシャルトランザクションデータの特徴表現を強化する。
その結果,従来のLSTMベースラインと比較して,精度,精度,リコール,F1スコアの競争力の向上が示された。
論文 参考訳(メタデータ) (2025-04-30T19:09:12Z) - Hybrid Quantum Neural Networks with Variational Quantum Regressor for Enhancing QSPR Modeling of CO2-Capturing Amine [0.9968037829925945]
我々は,CO2捕捉アミンの構造-適合関係モデルを改善するために,ハイブリッド量子ニューラルネットワーク(HQNN)を開発した。
HQNNは、塩基性、粘性、沸点、融点、蒸気圧などの主要な溶媒特性の予測精度を向上させる。
論文 参考訳(メタデータ) (2025-03-01T07:26:45Z) - Quantum Kernel-Based Long Short-term Memory for Climate Time-Series Forecasting [0.24739484546803336]
本稿では,量子カーネル法を従来のLSTMアーキテクチャに統合したQK-LSTM(Quantum Kernel-Based Long short-Memory)ネットワークを提案する。
QK-LSTMは、トレーニング可能なパラメータが少ない複雑な非線形依存と時間ダイナミクスをキャプチャする。
論文 参考訳(メタデータ) (2024-12-12T01:16:52Z) - Quantum Kernel-Based Long Short-term Memory [0.30723404270319693]
本稿では,Quantum Kernel-Based Long Short-Term Memory (QK-LSTM) ネットワークを導入する。
この量子化アーキテクチャは、効率的な収束、ロバストな損失最小化、モデルコンパクト性を示す。
ベンチマークの結果,QK-LSTMは従来のLSTMモデルと同等の性能を示すが,パラメータは少ない。
論文 参考訳(メタデータ) (2024-11-20T11:39:30Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
本稿では,量子ハイブリッド拡散モデルの設計手法を提案する。
量子コンピューティングの優れた一般化と古典的ネットワークのモジュラリティを組み合わせた2つのハイブリダイゼーション手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T16:57:51Z) - GQHAN: A Grover-inspired Quantum Hard Attention Network [53.96779043113156]
GQHAM(Grover-inspired Quantum Hard Attention Mechanism)を提案する。
GQHANは、既存の量子ソフト自己保持機構の有効性を超越して、非微分可能性ハードルをかなり上回っている。
GQHANの提案は、将来の量子コンピュータが大規模データを処理する基盤を築き、量子コンピュータビジョンの開発を促進するものである。
論文 参考訳(メタデータ) (2024-01-25T11:11:16Z) - A hybrid quantum-classical fusion neural network to improve protein-ligand binding affinity predictions for drug discovery [0.0]
本稿では,薬物発見における親和性予測に適したハイブリッド量子古典的深層学習モデルを提案する。
具体的には、最適化量子アーキテクチャにおいて、3次元および空間グラフ畳み込みニューラルネットワークを相乗的に統合する。
シミュレーションの結果、既存の古典的モデルと比較して予測精度が6%向上し、従来の古典的手法に比べてはるかに安定した収束性能を示した。
論文 参考訳(メタデータ) (2023-09-06T11:56:33Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
変分量子回路(VQC)は、ノイズの多い中間スケール量子(NISQ)デバイス上での量子機械学習を約束する。
テンソルトレインネットワーク(TTN)はVQC表現と一般化を向上させることができるが、結果として得られるハイブリッドモデルであるTTN-VQCは、Polyak-Lojasiewicz(PL)条件による最適化の課題に直面している。
この課題を軽減するために,プレトレーニングTTNモデルとVQCを組み合わせたPre+TTN-VQCを導入する。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
量子ニューラルネットワーク(QNN)は、現代の量子マシンの力を発揮する。
ハンドクラフト対称アンサーゼを持つQNNは、一般に非対称アンサーゼを持つものよりも訓練性が高い。
本稿では,QNNのグローバル最適収束を定量化するために,実効量子ニューラルネットワークカーネル(EQNTK)を提案する。
論文 参考訳(メタデータ) (2022-08-30T08:17:55Z) - The dilemma of quantum neural networks [63.82713636522488]
量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
論文 参考訳(メタデータ) (2021-06-09T10:41:47Z) - Hybrid Quantum-Classical Graph Convolutional Network [7.0132255816377445]
本研究は、HEPデータを学習するためのハイブリッド量子古典グラフ畳み込みネットワーク(QGCNN)を提供する。
提案フレームワークは,パラメータ数の観点から,古典的多層パーセプトロンと畳み込みニューラルネットワークの優位性を示す。
テスト精度に関して、QGCNNは、同じHEPデータセット上の量子畳み込みニューラルネットワークと同等のパフォーマンスを示している。
論文 参考訳(メタデータ) (2021-01-15T16:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。