論文の概要: Diffusion-Based Depth Inpainting for Transparent and Reflective Objects
- arxiv url: http://arxiv.org/abs/2410.08567v1
- Date: Fri, 11 Oct 2024 06:45:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 23:04:57.448707
- Title: Diffusion-Based Depth Inpainting for Transparent and Reflective Objects
- Title(参考訳): 透過的・反射的物体に対する拡散法による深度塗布
- Authors: Tianyu Sun, Dingchang Hu, Yixiang Dai, Guijin Wang,
- Abstract要約: 本稿では,透過的および反射的オブジェクトに特化して設計された拡散型深度塗布フレームワークを提案する。
DITRは、堅牢な適応性を持つ透明で反射性のある物体の奥行き塗装に非常に効果的である。
- 参考スコア(独自算出の注目度): 6.571006663689738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transparent and reflective objects, which are common in our everyday lives, present a significant challenge to 3D imaging techniques due to their unique visual and optical properties. Faced with these types of objects, RGB-D cameras fail to capture the real depth value with their accurate spatial information. To address this issue, we propose DITR, a diffusion-based Depth Inpainting framework specifically designed for Transparent and Reflective objects. This network consists of two stages, including a Region Proposal stage and a Depth Inpainting stage. DITR dynamically analyzes the optical and geometric depth loss and inpaints them automatically. Furthermore, comprehensive experimental results demonstrate that DITR is highly effective in depth inpainting tasks of transparent and reflective objects with robust adaptability.
- Abstract(参考訳): 我々の日常生活に共通する透明で反射的な物体は、その独特の視覚的・光学的特性から、3Dイメージング技術に重大な課題をもたらす。
この種の物体に直面して、RGB-Dカメラは正確な空間情報で実際の深度を捉えることができない。
この問題に対処するために,透過的および反射的オブジェクトに特化して設計された拡散型Depth InpaintingフレームワークであるDITRを提案する。
このネットワークは、リージョンプロポーザルステージとディープス・インペインティングステージの2つのステージで構成されている。
DITRは光学的および幾何学的深さ損失を動的に解析し、それらを自動的に塗布する。
さらに、総合的な実験結果から、DITRは堅牢な適応性を持つ透明で反射性のある物体の深部塗布作業に極めて効果的であることが示された。
関連論文リスト
- ClearDepth: Enhanced Stereo Perception of Transparent Objects for Robotic Manipulation [18.140839442955485]
我々は透明物体の立体深度回復のための視覚変換器に基づくアルゴリズムを開発した。
提案手法は,効率的なデータ生成のためのパラメータ整合,ドメイン適応,物理的に現実的なSim2Realシミュレーションを含む。
実世界のシナリオにおけるSim2Realの例外的な一般化性を示す実験結果を得た。
論文 参考訳(メタデータ) (2024-09-13T15:44:38Z) - Transparent Object Depth Completion [11.825680661429825]
理解と操作のための透明な物体の認識は、依然として大きな課題である。
深度マップに大きく依存する既存のロボットグリップ法は、その独特の視覚特性のために透明な物体には適さない。
本稿では,一視点RGB-Dに基づく深度推定と多視点深度推定の長所を組み合わせた,透明物体深度補完のためのエンドツーエンドネットワークを提案する。
論文 参考訳(メタデータ) (2024-05-24T07:38:06Z) - UniSDF: Unifying Neural Representations for High-Fidelity 3D
Reconstruction of Complex Scenes with Reflections [92.38975002642455]
大規模な複雑なシーンをリフレクションで再構成できる汎用3次元再構成手法UniSDFを提案する。
提案手法は,複雑な大規模シーンを細部と反射面で頑健に再構築することができる。
論文 参考訳(メタデータ) (2023-12-20T18:59:42Z) - Tabletop Transparent Scene Reconstruction via Epipolar-Guided Optical
Flow with Monocular Depth Completion Prior [14.049778178534588]
モバイルプラットフォームに適した透明なオブジェクトを再構築するための2段階パイプラインを導入する。
EOF(Epipolar-Guided Optical Flow)は、一貫した3次元再構成に先立って複数の単一視野形状を融合する。
パイプラインは, 3次元再構成品質において, ベースライン法を著しく上回っている。
論文 参考訳(メタデータ) (2023-10-15T21:30:06Z) - Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
本稿では,大都市におけるシーン形状,空間変化材料,HDR照明を,任意の深さで描画したRGB画像の集合から共同で再構成できる新しい逆レンダリングフレームワークを提案する。
具体的には、第1の光線を考慮に入れ、第2の光線をモデリングするために、明示的なメッシュ(基礎となるニューラルネットワークから再構成)を用いて、キャストシャドウのような高次照明効果を発生させる。
論文 参考訳(メタデータ) (2023-04-06T17:51:54Z) - MonoGraspNet: 6-DoF Grasping with a Single RGB Image [73.96707595661867]
6-DoFロボットの把握は長続きするが未解決の問題だ。
近年の手法では3次元ネットワークを用いて深度センサから幾何的把握表現を抽出している。
我々はMonoGraspNetと呼ばれるRGBのみの6-DoFグルーピングパイプラインを提案する。
論文 参考訳(メタデータ) (2022-09-26T21:29:50Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
RGB-D Salient Object Detection (SOD) のための新しいマルチタスク・マルチモーダルフィルタトランス (MMFT) ネットワークを提案する。
具体的には、深度推定、健全な物体検出、輪郭推定の3つの相補的なタスクを統合する。マルチタスク機構は、タスク認識の特徴を補助タスクから学習するためのモデルを促進する。
実験の結果、複数のデータセット上での深度に基づくRGB-D SOD法をはるかに上回るだけでなく、高品質の深度マップと塩分濃度を同時に正確に予測できることがわかった。
論文 参考訳(メタデータ) (2022-03-09T17:20:18Z) - ClearPose: Large-scale Transparent Object Dataset and Benchmark [7.342978076186365]
我々はClearPoseという名前の大規模現実世界のRGB-Depth透明オブジェクトデータセットをコントリビュートし、セグメンテーション、シーンレベルの深さ補完、オブジェクト中心のポーズ推定タスクのベンチマークデータセットとして機能する。
ClearPoseデータセットには、実世界のRGB-Depthフレームに350万以上のラベルが付けられ、63の家庭用オブジェクトをカバーする4Mインスタンスアノテーションが含まれている。
論文 参考訳(メタデータ) (2022-03-08T07:29:31Z) - Through the Looking Glass: Neural 3D Reconstruction of Transparent
Shapes [75.63464905190061]
屈折と反射によって誘導される複雑な光路は、従来の多視点ステレオと深いステレオの両方がこの問題を解決するのを妨げている。
携帯電話カメラで取得したいくつかの画像を用いて透明物体の3次元形状を復元する物理ネットワークを提案する。
5-12個の自然画像を用いて, 複雑な透明形状に対する高品質な3次元形状の復元に成功した。
論文 参考訳(メタデータ) (2020-04-22T23:51:30Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
本稿では,任意の物体の高品質な形状と複雑な空間変化を持つBRDFを再構成する学習に基づく新しい手法を提案する。
まず、深層多視点ステレオネットワークを用いて、ビューごとの深度マップを推定する。
これらの深度マップは、異なるビューを粗く整列するために使用される。
本稿では,新しい多視点反射率推定ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-03-27T21:28:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。