Preferential Normalizing Flows
- URL: http://arxiv.org/abs/2410.08710v2
- Date: Wed, 16 Oct 2024 17:06:41 GMT
- Title: Preferential Normalizing Flows
- Authors: Petrus Mikkola, Luigi Acerbi, Arto Klami,
- Abstract summary: Eliciting a high-dimensional probability distribution from an expert via noisy judgments is notoriously challenging, yet useful for many applications.
We introduce a method for eliciting the expert's belief density as a normalizing flow based solely on preferential questions.
We show that the belief density can be inferred as the function-space maximum a posteriori estimate.
- Score: 9.073645394501082
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Eliciting a high-dimensional probability distribution from an expert via noisy judgments is notoriously challenging, yet useful for many applications, such as prior elicitation and reward modeling. We introduce a method for eliciting the expert's belief density as a normalizing flow based solely on preferential questions such as comparing or ranking alternatives. This allows eliciting in principle arbitrarily flexible densities, but flow estimation is susceptible to the challenge of collapsing or diverging probability mass that makes it difficult in practice. We tackle this problem by introducing a novel functional prior for the flow, motivated by a decision-theoretic argument, and show empirically that the belief density can be inferred as the function-space maximum a posteriori estimate. We demonstrate our method by eliciting multivariate belief densities of simulated experts, including the prior belief of a general-purpose large language model over a real-world dataset.
Related papers
- Efficient, Multimodal, and Derivative-Free Bayesian Inference With Fisher-Rao Gradient Flows [10.153270126742369]
We study efficient approximate sampling for probability distributions known up to normalization constants.
We specifically focus on a problem class arising in Bayesian inference for large-scale inverse problems in science and engineering applications.
arXiv Detail & Related papers (2024-06-25T04:07:22Z) - On Subjective Uncertainty Quantification and Calibration in Natural Language Generation [2.622066970118316]
Large language models often involve the generation of free-form responses, in which case uncertainty quantification becomes challenging.
This work addresses these challenges from a perspective of Bayesian decision theory.
We discuss how this assumption enables principled quantification of the model's subjective uncertainty and its calibration.
The proposed methods can be applied to black-box language models.
arXiv Detail & Related papers (2024-06-07T18:54:40Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
We propose a new estimation method by actively de-noising the observed data.
By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
arXiv Detail & Related papers (2023-12-16T14:59:11Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Robust probabilistic inference via a constrained transport metric [8.85031165304586]
We offer a novel alternative by constructing an exponentially tilted empirical likelihood carefully designed to concentrate near a parametric family of distributions.
The proposed approach finds applications in a wide variety of robust inference problems, where we intend to perform inference on the parameters associated with the centering distribution.
We demonstrate superior performance of our methodology when compared against state-of-the-art robust Bayesian inference methods.
arXiv Detail & Related papers (2023-03-17T16:10:06Z) - Simplified Continuous High Dimensional Belief Space Planning with
Adaptive Probabilistic Belief-dependent Constraints [9.061408029414453]
Under uncertainty in partially observable domains, also known as Belief Space Planning, online decision making is a fundamental problem.
We present a technique to adaptively accept or discard a candidate action sequence with respect to a probabilistic belief-dependent constraint.
We apply our method to active SLAM, a highly challenging problem of high dimensional Belief Space Planning.
arXiv Detail & Related papers (2023-02-13T21:22:47Z) - Principled Knowledge Extrapolation with GANs [92.62635018136476]
We study counterfactual synthesis from a new perspective of knowledge extrapolation.
We show that an adversarial game with a closed-form discriminator can be used to address the knowledge extrapolation problem.
Our method enjoys both elegant theoretical guarantees and superior performance in many scenarios.
arXiv Detail & Related papers (2022-05-21T08:39:42Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Modal Uncertainty Estimation via Discrete Latent Representation [4.246061945756033]
We introduce a deep learning framework that learns the one-to-many mappings between the inputs and outputs, together with faithful uncertainty measures.
Our framework demonstrates significantly more accurate uncertainty estimation than the current state-of-the-art methods.
arXiv Detail & Related papers (2020-07-25T05:29:34Z) - Composing Normalizing Flows for Inverse Problems [89.06155049265641]
We propose a framework for approximate inference that estimates the target conditional as a composition of two flow models.
Our method is evaluated on a variety of inverse problems and is shown to produce high-quality samples with uncertainty.
arXiv Detail & Related papers (2020-02-26T19:01:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.