Diagnosing Robotics Systems Issues with Large Language Models
- URL: http://arxiv.org/abs/2410.09084v1
- Date: Sun, 6 Oct 2024 11:58:12 GMT
- Title: Diagnosing Robotics Systems Issues with Large Language Models
- Authors: Jordis Emilia Herrmann, Aswath Mandakath Gopinath, Mikael Norrlof, Mark Niklas Müller,
- Abstract summary: Large language models (LLMs) excel at analyzing large amounts of data.
Here, we extend this work to the challenging and largely unexplored domain of robotics systems.
- Score: 5.30112395683561
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quickly resolving issues reported in industrial applications is crucial to minimize economic impact. However, the required data analysis makes diagnosing the underlying root causes a challenging and time-consuming task, even for experts. In contrast, large language models (LLMs) excel at analyzing large amounts of data. Indeed, prior work in AI-Ops demonstrates their effectiveness in analyzing IT systems. Here, we extend this work to the challenging and largely unexplored domain of robotics systems. To this end, we create SYSDIAGBENCH, a proprietary system diagnostics benchmark for robotics, containing over 2500 reported issues. We leverage SYSDIAGBENCH to investigate the performance of LLMs for root cause analysis, considering a range of model sizes and adaptation techniques. Our results show that QLoRA finetuning can be sufficient to let a 7B-parameter model outperform GPT-4 in terms of diagnostic accuracy while being significantly more cost-effective. We validate our LLM-as-a-judge results with a human expert study and find that our best model achieves similar approval ratings as our reference labels.
Related papers
- Are Large Language Models Useful for Time Series Data Analysis? [3.44393516559102]
Time series data plays a critical role across diverse domains such as healthcare, energy, and finance.
This study investigates whether large language models (LLMs) are effective for time series data analysis.
arXiv Detail & Related papers (2024-12-16T02:47:44Z) - AD-LLM: Benchmarking Large Language Models for Anomaly Detection [50.57641458208208]
This paper introduces AD-LLM, the first benchmark that evaluates how large language models can help with anomaly detection.
We examine three key tasks: zero-shot detection, using LLMs' pre-trained knowledge to perform AD without tasks-specific training; data augmentation, generating synthetic data and category descriptions to improve AD models; and model selection, using LLMs to suggest unsupervised AD models.
arXiv Detail & Related papers (2024-12-15T10:22:14Z) - Linear Discriminant Analysis in Credit Scoring: A Transparent Hybrid Model Approach [9.88281854509076]
We implement Linear Discriminant Analysis (LDA) as a feature reduction technique, which reduces the burden of the models complexity.
Our hybrid model, XG-DNN, outperformed other models with the highest accuracy of 99.45% and a 99% F1 score with LDA.
To interpret model decisions, we have applied 2 different explainable AI techniques named LIME (local) and Morris Sensitivity Analysis (global)
arXiv Detail & Related papers (2024-12-05T14:21:18Z) - Evaluating Language Models as Synthetic Data Generators [74.80905172696366]
AgoraBench is a benchmark that provides standardized settings and metrics to evaluate LMs' data generation abilities.
Through synthesizing 1.26 million training instances using 6 LMs and training 99 student models, we uncover key insights about LMs' data generation capabilities.
arXiv Detail & Related papers (2024-12-04T19:20:32Z) - Critical Tokens Matter: Token-Level Contrastive Estimation Enhances LLM's Reasoning Capability [53.51560766150442]
Critical tokens are elements within reasoning trajectories that significantly influence incorrect outcomes.
We present a novel framework for identifying these tokens through rollout sampling.
We show that identifying and replacing critical tokens significantly improves model accuracy.
arXiv Detail & Related papers (2024-11-29T18:58:22Z) - ToolBeHonest: A Multi-level Hallucination Diagnostic Benchmark for Tool-Augmented Large Language Models [43.895478182631116]
Tool-augmented large language models (LLMs) are rapidly being integrated into real-world applications.
To address this challenge, we introduce a comprehensive diagnostic benchmark, ToolBH.
For breadth, we consider three scenarios based on the characteristics of the toolset: missing necessary tools, potential tools, and limited functionality tools.
The results show the significant challenges presented by the ToolBH benchmark.
arXiv Detail & Related papers (2024-06-28T16:03:30Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation [83.30006900263744]
Data analysis is a crucial analytical process to generate in-depth studies and conclusive insights.
We propose to automatically generate high-quality answer annotations leveraging the code-generation capabilities of LLMs.
Our DACO-RL algorithm is evaluated by human annotators to produce more helpful answers than SFT model in 57.72% cases.
arXiv Detail & Related papers (2024-03-04T22:47:58Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - Fault Diagnosis using eXplainable AI: a Transfer Learning-based Approach
for Rotating Machinery exploiting Augmented Synthetic Data [0.0]
FaultD-XAI is a generic and interpretable approach for classifying faults in rotating machinery based on transfer learning.
To provide scalability using transfer learning, synthetic vibration signals are created mimicking the characteristic behavior of failures in operation.
The proposed approach not only obtained promising diagnostic performance, but was also able to learn characteristics used by experts to identify conditions.
arXiv Detail & Related papers (2022-10-06T15:02:35Z) - How Can Subgroup Discovery Help AIOps? [0.0]
We study how Subgroup Discovery can help AIOps.
This project involves both data mining researchers and practitioners from Infologic, a French software editor.
arXiv Detail & Related papers (2021-09-10T14:41:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.