論文の概要: DeepOSets: Non-Autoregressive In-Context Learning of Supervised Learning Operators
- arxiv url: http://arxiv.org/abs/2410.09298v3
- Date: Mon, 03 Feb 2025 21:24:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:54:19.908435
- Title: DeepOSets: Non-Autoregressive In-Context Learning of Supervised Learning Operators
- Title(参考訳): DeepOSets: 教師付き学習オペレータの非自己回帰型インコンテキスト学習
- Authors: Shao-Ting Chiu, Junyuan Hong, Ulisses Braga-Neto,
- Abstract要約: In-context Learning of permutation-invariant operator。DeepSets Operator Networks (DeepOSets)。
DeepOSetsはDeep Operator Networks(DeepONets)のオペレータ学習機能とDeepSetsのセット学習機能を組み合わせたものだ。
- 参考スコア(独自算出の注目度): 11.913853433712855
- License:
- Abstract: We introduce DeepSets Operator Networks (DeepOSets), an efficient, non-autoregressive neural network architecture for in-context learning of permutation-invariant operators. DeepOSets combines the operator learning capabilities of Deep Operator Networks (DeepONets) with the set learning capabilities of DeepSets. Here, we present the application of DeepOSets to the problem of learning supervised learning algorithms, which are continuous permutation-invariant operators. We show that DeepOSets are universal approximators for this class of operators. In an empirical comparison with a popular autoregressive (transformer-based) model for in-context learning of linear regression, DeepOSets reduced the number of model weights by several orders of magnitude and required a fraction of training and inference time, in addition to significantly outperforming the transformer model in noisy settings. We also demonstrate the multiple operator learning capabilities of DeepOSets with a polynomial regression experiment where the order of the polynomial is learned in-context from the prompt.
- Abstract(参考訳): In-context Learning of permutation-invariant operator。DeepSets Operator Networks (DeepOSets)。
DeepOSetsはDeep Operator Networks(DeepONets)のオペレータ学習機能とDeepSetsのセット学習機能を組み合わせたものだ。
本稿では,連続置換不変演算子である教師付き学習アルゴリズムの学習問題に対するDeepOSetsの適用について述べる。
本稿では,DeepOSetsが演算子のクラスに対する普遍近似であることを示す。
線形回帰の文脈内学習のための一般的な自己回帰モデル(トランスフォーマーベース)との実証的な比較では、DeepOSetsはモデルの重み付けを数桁の桁に減らし、トレーニングと推論時間の一部を要し、ノイズの多い設定でトランスフォーマーモデルを著しく上回った。
また、多項式の順序をインプロンプトから学習する多項式回帰実験により、DeepOSetsの複数の演算子学習能力を実証する。
関連論文リスト
- A Library for Learning Neural Operators [77.16483961863808]
我々は、演算子学習のためのオープンソースのPythonライブラリであるNeuralOperatorを紹介する。
ニューラルネットワークは有限次元ユークリッド空間の代わりに関数空間間の写像に一般化される。
PyTorch上に構築されたNeuralOperatorは、ニューラルオペレータモデルのトレーニングとデプロイのためのツールをすべて提供する。
論文 参考訳(メタデータ) (2024-12-13T18:49:37Z) - On the training and generalization of deep operator networks [11.159056906971983]
深層演算ネットワーク(DeepONets)のための新しいトレーニング手法を提案する。
DeepONetsは2つのサブネットワークによって構築されている。
入力データの観点から幅誤差推定値を確立する。
論文 参考訳(メタデータ) (2023-09-02T21:10:45Z) - Transfer Learning Enhanced DeepONet for Long-Time Prediction of
Evolution Equations [9.748550197032785]
ディープオペレータネットワーク(DeepONet)は,様々な学習タスクにおいて大きな成功を収めている。
本稿では,DeepONetを用いたエミュレーション学習による安定性向上を提案する。
論文 参考訳(メタデータ) (2022-12-09T04:37:08Z) - Multifidelity deep neural operators for efficient learning of partial
differential equations with application to fast inverse design of nanoscale
heat transport [2.512625172084287]
深部演算子ネットワーク(DeepONet)に基づく多要素ニューラル演算子の開発
多重忠実度DeepONetは、要求される高忠実度データの量を大幅に削減し、同じ量の高忠実度データを使用する場合の1桁の誤差を1桁小さくする。
ナノスケール熱輸送を計算するためのフレームワークであるフォノンボルツマン輸送方程式 (BTE) の学習に多要素DeepONetを適用した。
論文 参考訳(メタデータ) (2022-04-14T01:01:24Z) - MultiAuto-DeepONet: A Multi-resolution Autoencoder DeepONet for
Nonlinear Dimension Reduction, Uncertainty Quantification and Operator
Learning of Forward and Inverse Stochastic Problems [12.826754199680474]
本稿では,微分方程式(SDE)の演算子学習のための新しいデータ駆動手法を提案する。
中心的な目標は、限られたデータを使ってより効果的に前方および逆問題を解決することである。
論文 参考訳(メタデータ) (2022-04-07T03:53:49Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Improved architectures and training algorithms for deep operator
networks [0.0]
演算子学習技術は無限次元バナッハ空間間の写像を学習するための強力なツールとして登場した。
我々は,ニューラルタンジェントカーネル(NTK)理論のレンズを用いて,ディープオペレータネットワーク(DeepONets)のトレーニングダイナミクスを解析した。
論文 参考訳(メタデータ) (2021-10-04T18:34:41Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
本稿では,2組の深層ReLUネットワークを用いたコントラスト型自己教師学習(SSL)手法を理解するための新しい枠組みを提案する。
種々の損失関数を持つSimCLRの各SGD更新において、各層の重みは共分散演算子によって更新されることを示す。
共分散演算子の役割と、そのようなプロセスでどのような特徴が学習されるかをさらに研究するために、我々は、階層的潜在木モデル(HLTM)を用いて、データ生成および増大過程をモデル化する。
論文 参考訳(メタデータ) (2020-10-01T17:51:49Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
本稿では,マルチスケール学習を対象とする,漸進的に訓練された再帰的アーキテクチャを提案する。
隠れた状態を異なるモジュールに分割することで、シンプルなRNNのアーキテクチャを拡張する方法を示す。
新しいモジュールがモデルに反復的に追加され、徐々に長い依存関係を学習するトレーニングアルゴリズムについて議論する。
論文 参考訳(メタデータ) (2020-06-29T08:35:49Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。