論文の概要: DuoDiff: Accelerating Diffusion Models with a Dual-Backbone Approach
- arxiv url: http://arxiv.org/abs/2410.09633v2
- Date: Wed, 04 Dec 2024 22:16:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:37:14.094309
- Title: DuoDiff: Accelerating Diffusion Models with a Dual-Backbone Approach
- Title(参考訳): DuoDiff: デュアルバックボーンアプローチによる拡散モデルの高速化
- Authors: Daniel Gallo Fernández, Răzvan-Andrei Matişan, Alejandro Monroy Muñoz, Ana-Maria Vasilcoiu, Janusz Partyka, Tin Hadži Veljković, Metod Jazbec,
- Abstract要約: 近年,各サンプリングステップの難易度に基づいてデノナイジングネットワークの深さを適応させる手法が提案されている。
本稿では,初期サンプリングステップでより浅いデノナイジングネットワーク,後半ステップでより深いネットワークを用いることにより,より高速な生成を提案する。
両バックボーンアプローチであるDuoDiffは、推定速度と生成品質の両方で既存の早期拡散法より優れていることを実証的に実証する。
- 参考スコア(独自算出の注目度): 36.23986690453326
- License:
- Abstract: Diffusion models have achieved unprecedented performance in image generation, yet they suffer from slow inference due to their iterative sampling process. To address this, early-exiting has recently been proposed, where the depth of the denoising network is made adaptive based on the (estimated) difficulty of each sampling step. Here, we discover an interesting "phase transition" in the sampling process of current adaptive diffusion models: the denoising network consistently exits early during the initial sampling steps, until it suddenly switches to utilizing the full network. Based on this, we propose accelerating generation by employing a shallower denoising network in the initial sampling steps and a deeper network in the later steps. We demonstrate empirically that our dual-backbone approach, DuoDiff, outperforms existing early-exit diffusion methods in both inference speed and generation quality. Importantly, DuoDiff is easy to implement and complementary to existing approaches for accelerating diffusion.
- Abstract(参考訳): 拡散モデルは画像生成において前例のない性能を達成したが、反復的なサンプリングプロセスのために推論が遅い。
この問題に対処するため、最近、各サンプリングステップの(推定)難易度に基づいてデノナイジングネットワークの深さを適応させるアーリーエグジットが提案されている。
ここでは、現在の適応拡散モデルのサンプリングプロセスにおいて、興味深い「位相遷移」が発見される:デノナイジングネットワークは、最初のサンプリングステップの間、常に早期に終了し、突然全ネットワークを利用するようになる。
そこで本研究では,初期サンプリングステップではより浅いデノナイジングネットワーク,後半ステップではより深いネットワークを用いて,より高速な生成を提案する。
両バックボーンアプローチであるDuoDiffは、推定速度と生成品質の両方で既存の早期拡散法より優れていることを実証的に実証する。
重要なのは、DuoDiffの実装が簡単で、拡散を加速するための既存のアプローチを補完することです。
関連論文リスト
- Improving Diffusion Inverse Problem Solving with Decoupled Noise Annealing [84.97865583302244]
本稿では,新しいノイズアニーリングプロセスに依存するDAPS (Decoupled Annealing Posterior Sampling) 法を提案する。
DAPSは、複数の画像復元タスクにおけるサンプル品質と安定性を著しく改善する。
例えば、フェーズ検索のためのFFHQ 256データセット上で、PSNRが30.72dBである場合、既存の手法と比較して9.12dBの改善となる。
論文 参考訳(メタデータ) (2024-07-01T17:59:23Z) - Boosting Diffusion Models with Moving Average Sampling in Frequency Domain [101.43824674873508]
拡散モデルは、現在のサンプルに頼って次のサンプルをノイズ化し、おそらく不安定化を引き起こす。
本稿では,反復的復調過程をモデル最適化として再解釈し,移動平均機構を利用して全ての先行サンプルをアンサンブルする。
周波数領域における平均サンプリング(MASF)の動作」という完全なアプローチを命名する。
論文 参考訳(メタデータ) (2024-03-26T16:57:55Z) - Invertible Diffusion Models for Compressed Sensing [22.293412255419614]
Invertible Diffusion Models (IDM) は、新しい効率的でエンドツーエンドの拡散に基づくCS法である。
IDMはCS測定から直接元の画像を復元するためにエンドツーエンドに微調整する。
IDMは最大10.09dBのPSNRゲインと14.54倍の高速化を実現している。
論文 参考訳(メタデータ) (2024-03-25T17:59:41Z) - Towards More Accurate Diffusion Model Acceleration with A Timestep
Aligner [84.97253871387028]
数千のデノナイジングステップを用いて画像を生成するために定式化された拡散モデルは通常、遅い推論速度に悩まされる。
最小限のコストで特定の区間に対するより正確な積分方向を見つけるのに役立つ時間ステップ整合器を提案する。
実験により,我々のプラグイン設計を効率的に訓練し,様々な最先端加速度法の推論性能を向上できることが示された。
論文 参考訳(メタデータ) (2023-10-14T02:19:07Z) - DiffuSeq-v2: Bridging Discrete and Continuous Text Spaces for
Accelerated Seq2Seq Diffusion Models [58.450152413700586]
ガウス空間に基づく離散突然変異を再構成する学習において拡散モデルを容易にする軟吸収状態を導入する。
我々は、サンプリングプロセスの高速化のために、連続空間内で最先端のODEソルバを用いている。
提案手法は, トレーニング収束率を4倍に向上させ, 類似品質のサンプルを800倍高速に生成する。
論文 参考訳(メタデータ) (2023-10-09T15:29:10Z) - Single and Few-step Diffusion for Generative Speech Enhancement [18.487296462927034]
拡散モデルは音声強調において有望な結果を示した。
本稿では,2段階の学習手法を用いて,これらの制約に対処する。
提案手法は定常的な性能を保ち,従って拡散ベースラインよりも大きく向上することを示す。
論文 参考訳(メタデータ) (2023-09-18T11:30:58Z) - Underwater Image Enhancement by Transformer-based Diffusion Model with
Non-uniform Sampling for Skip Strategy [2.056162650908794]
水中シーンにおける拡散モデルを用いた画像強調手法を提案する。
本手法は,条件付き拡散確率モデルに適応し,対応する拡張画像を生成する。
実験結果から,本手法は競争性能と高い効率を両立できることが示された。
論文 参考訳(メタデータ) (2023-09-07T01:58:06Z) - Fast Diffusion Model [122.36693015093041]
拡散モデル(DM)は、複雑なデータ分布を捉える能力を持つ様々な分野に採用されている。
本稿では,DM最適化の観点から,高速拡散モデル (FDM) を提案する。
論文 参考訳(メタデータ) (2023-06-12T09:38:04Z) - Truncated Diffusion Probabilistic Models and Diffusion-based Adversarial
Auto-Encoders [137.1060633388405]
拡散に基づく生成モデルは、逆拡散連鎖を推論してデータを生成する方法を学ぶ。
我々は、データが純粋なランダムノイズになるまで、より高速で安価にノイズを付加するアプローチを提案する。
提案手法は,拡散過程と学習可能な暗黙的前処理の両方によって付与された逆自動エンコーダとしてキャスト可能であることを示す。
論文 参考訳(メタデータ) (2022-02-19T20:18:49Z) - Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models
for Inverse Problems through Stochastic Contraction [31.61199061999173]
拡散モデルには重要な欠点がある。純粋なガウスノイズから画像を生成するために数千ステップの反復を必要とするため、サンプリングが本質的に遅い。
ガウスノイズから始めることは不要であることを示す。代わりに、より優れた初期化を伴う単一前方拡散から始めると、逆条件拡散におけるサンプリングステップの数を大幅に減少させる。
ComeCloser-DiffuseFaster (CCDF)と呼ばれる新しいサンプリング戦略は、逆問題に対する既存のフィードフォワードニューラルネットワークアプローチが拡散モデルと相乗的に組み合わせられる方法について、新たな洞察を明らかにしている。
論文 参考訳(メタデータ) (2021-12-09T04:28:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。