論文の概要: Uncovering Attacks and Defenses in Secure Aggregation for Federated Deep Learning
- arxiv url: http://arxiv.org/abs/2410.09676v1
- Date: Thu, 17 Oct 2024 22:20:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 08:46:35.271014
- Title: Uncovering Attacks and Defenses in Secure Aggregation for Federated Deep Learning
- Title(参考訳): 深層学習のための安全な集合における攻撃と防御の発見
- Authors: Yiwei Zhang, Rouzbeh Behnia, Attila A. Yavuz, Reza Ebrahimi, Elisa Bertino,
- Abstract要約: フェデレートラーニングは、多様なデータに対するグローバルモデルの協調学習を可能にし、データのローカリティを保ち、ユーザデータを中央サーバに転送する必要をなくす。
セキュアアグリゲーションプロトコルは、ユーザ更新をマスク/暗号化し、中央サーバがマスキングされた情報を集約できるように設計されている。
MicroSecAgg (PoPETS 2024) は,既存のアプローチの通信複雑性を緩和することを目的とした,単一のサーバセキュアアグリゲーションプロトコルを提案する。
- 参考スコア(独自算出の注目度): 17.45950557331482
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning enables the collaborative learning of a global model on diverse data, preserving data locality and eliminating the need to transfer user data to a central server. However, data privacy remains vulnerable, as attacks can target user training data by exploiting the updates sent by users during each learning iteration. Secure aggregation protocols are designed to mask/encrypt user updates and enable a central server to aggregate the masked information. MicroSecAgg (PoPETS 2024) proposes a single server secure aggregation protocol that aims to mitigate the high communication complexity of the existing approaches by enabling a one-time setup of the secret to be re-used in multiple training iterations. In this paper, we identify a security flaw in the MicroSecAgg that undermines its privacy guarantees. We detail the security flaw and our attack, demonstrating how an adversary can exploit predictable masking values to compromise user privacy. Our findings highlight the critical need for enhanced security measures in secure aggregation protocols, particularly the implementation of dynamic and unpredictable masking strategies. We propose potential countermeasures to mitigate these vulnerabilities and ensure robust privacy protection in the secure aggregation frameworks.
- Abstract(参考訳): フェデレートラーニングは、多様なデータに対するグローバルモデルの協調学習を可能にし、データのローカリティを保ち、ユーザデータを中央サーバに転送する必要をなくす。
しかし、データのプライバシは依然として脆弱であり、各学習イテレーション中にユーザから送信されたアップデートを活用することで、攻撃がユーザトレーニングデータをターゲットにすることができる。
セキュアアグリゲーションプロトコルは、ユーザ更新をマスク/暗号化し、中央サーバがマスキングされた情報を集約できるように設計されている。
MicroSecAgg (PoPETS 2024) は,複数のトレーニングイテレーションでシークレットのワンタイムセットアップを再使用可能にすることで,既存のアプローチの通信複雑性を緩和することを目的とした,単一のサーバセキュアアグリゲーションプロトコルを提案する。
本稿では、プライバシー保証を損なうMicroSecAggのセキュリティ欠陥を特定する。
セキュリティの欠陥と攻撃について詳述し、敵が予測可能なマスキング値を利用してユーザーのプライバシーを侵害する方法を実証する。
本研究は,セキュアアグリゲーションプロトコルにおけるセキュリティ対策の強化,特に動的かつ予測不能なマスキング戦略の実装に対する重要なニーズを浮き彫りにしている。
我々は、これらの脆弱性を軽減し、セキュアなアグリゲーションフレームワークにおける堅牢なプライバシ保護を確保するための潜在的対策を提案する。
関連論文リスト
- The Communication-Friendly Privacy-Preserving Machine Learning against Malicious Adversaries [14.232901861974819]
プライバシー保護機械学習(PPML)は、機密情報を保護しながらセキュアなデータ分析を可能にする革新的なアプローチである。
セキュアな線形関数評価のための効率的なプロトコルを導入する。
我々は、このプロトコルを拡張して、線形層と非線形層を扱い、幅広い機械学習モデルとの互換性を確保する。
論文 参考訳(メタデータ) (2024-11-14T08:55:14Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - Secure Aggregation is Not Private Against Membership Inference Attacks [66.59892736942953]
フェデレーション学習におけるSecAggのプライバシーへの影響について検討する。
SecAggは、単一のトレーニングラウンドであっても、メンバシップ推論攻撃に対して弱いプライバシを提供します。
以上の結果から,ノイズ注入などの付加的なプライバシー強化機構の必要性が浮き彫りになった。
論文 参考訳(メタデータ) (2024-03-26T15:07:58Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
コントロールエリアネットワーク(CAN)バスは車内通信を本質的に安全でないものにしている。
本稿では,CANバスにおける15の認証プロトコルをレビューし,比較する。
実装の容易性に寄与する本質的な運用基準に基づくプロトコルの評価を行う。
論文 参考訳(メタデータ) (2024-01-19T14:52:04Z) - Security and Privacy Issues of Federated Learning [0.0]
フェデレートラーニング(FL)は、データのプライバシと機密性に対処するための有望なアプローチとして登場した。
本稿では,各種機械学習モデルを対象としたフェデレートラーニング(FL)におけるセキュリティとプライバシの包括的分類について述べる。
論文 参考訳(メタデータ) (2023-07-22T22:51:07Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Secure Aggregation Is Not All You Need: Mitigating Privacy Attacks with
Noise Tolerance in Federated Learning [0.0]
フェデレーション学習は、AIモデルを作成しながらデータのプライバシを保護することを目的としている。
現在のアプローチは、データのプライバシを保護するためのセキュアなアグリゲーションプロトコルに大きく依存しています。
サーバが完全に悪意を持っていれば生じる可能性のある,セキュアなアグリゲーションに対する脆弱性を調査します。
論文 参考訳(メタデータ) (2022-11-10T05:13:08Z) - Eluding Secure Aggregation in Federated Learning via Model Inconsistency [2.647302105102753]
フェデレートされた学習により、ユーザーはプライベートトレーニングデータセット上でディープニューラルネットワークをトレーニングできる。
悪意のあるサーバは,たとえ後者が存在していなかったとしても,セキュアなアグリゲーションを容易に回避できることを示す。
個別のプライベートトレーニングデータセットに関する情報を推測できる2つの異なる攻撃を考案する。
論文 参考訳(メタデータ) (2021-11-14T16:09:11Z) - Unleashing the Tiger: Inference Attacks on Split Learning [2.492607582091531]
クライアントのプライベートトレーニングセットの再構築を目的とした汎用的な攻撃戦略を導入する。
悪意のあるサーバは、分散モデルの学習プロセスを積極的にハイジャックすることができる。
我々は、最近提案された防御手法を克服できることを実証する。
論文 参考訳(メタデータ) (2020-12-04T15:41:00Z) - Towards Bidirectional Protection in Federated Learning [70.36925233356335]
F2ED-LEARNINGは、悪意のある集中型サーバとビザンティンの悪意のあるクライアントに対して双方向の防御を提供する。
F2ED-LEARNINGは各シャードの更新を安全に集約し、異なるシャードからの更新に対してFilterL2を起動する。
評価の結果,F2ED-LEARNing は最適あるいは最適に近い性能が得られることがわかった。
論文 参考訳(メタデータ) (2020-10-02T19:37:02Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
本稿では,フェデレート学習に基づくGated Recurrent Unit Neural Network Algorithm (FedGRU) というプライバシ保護機械学習手法を提案する。
FedGRUは、現在の集中学習方法と異なり、安全なパラメータアグリゲーション機構を通じて、普遍的な学習モデルを更新する。
FedGRUの予測精度は、先進的なディープラーニングモデルよりも90.96%高い。
論文 参考訳(メタデータ) (2020-03-19T13:07:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。